Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08014

Bioconversion of Piceid to Piceid Glucoside Using Amylosucrase from Alteromonas macleodii Deep Ecotype  

Park, Hyunsu (Department of Microbiology, College of Natural Sciences, Pusan National University)
Kim, Jieun (Department of Microbiology, College of Natural Sciences, Pusan National University)
Park, Ji-Hae (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Baek, Nam-In (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Lee, Hee-Seob (Department of Food and Nutrition, Pusan National University)
Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1698-1704 More about this Journal
Abstract
Resveratrol, or its glycoside form piceid, is a dietary antioxidant polyphenolic compound, found in grapes and red wine that has been shown to have protective effects against cardiovascular disease. However, very low water solubility of the compound may limit its application in the food and pharmaceutical industries. The amylosucrase (AMAS) of Alteromonas macleodii Deep ecotype was expressed in Escherichia coli and showed high glycosyltransferase activity to produce the glucosyl piceid when piceid was used as an acceptor. The conversion yield of piceid glucoside was 35.2%. Biotransformation using culture of the E. coli harboring the amas gene increased the yield up to 70.8%. The transfer product was purified by reverse phase chromatography and recycling preparative HPLC, and the molecular structure of the piceid glucoside was determined using NMR spectroscopy. The piceid glucoside was identified as glucosyl-${\alpha}$-($1{\rightarrow}4$)-piceid. The solubility of glucosyl piceid was 5.26 and 1.14 times higher than those of resveratrol and piceid, respectively. It is anticipated that dietary intake of this compound is more effective by enhancing the bioavailability of resveratrol in the human body because of its hydrophilic properties in the intestinal fluid.
Keywords
Amylosucrase; Alteromonas macleodii Deep ecotype; biotransformation; piceid; resveratrol; transglycosylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, D., S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, et al. 2004. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789-2797.   DOI   ScienceOn
2 Moon, Y. H., S. H. Nam, J. Kang, Y. M. Kim, J. H. Lee, H. K. Kang, et al. 2007. Enzymatic synthesis and characterization of arbutin glucosides using glucansucrase from Leuconostoc mesenteroides B-1299CB. Appl. Microbiol. Biotechnol. 77: 559-567.   DOI   ScienceOn
3 Murota, K., N. Matsuda, Y. Kashino, Y. Fujikura, T. Nakamura, Y. Kato, et al. 2010. ${\alpha}$-Oligoglucoylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 501: 91-97.   DOI   ScienceOn
4 Park, H., J. Kim, K. H. Choi, S. Hwang, S. J. Yang, N. I. Baek, and J. Cha. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189.   DOI   ScienceOn
5 Romero-Perez, A. I., M. Ibern-Gomez, R. M. Lamuela- Raventos, and M. C. de la Torre-Boronat. 1999. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 47: 1533-1536.   DOI   ScienceOn
6 de Roode, B. M., M. C. Franssen, A. van der Padt, and R. M. Boom. 2003. Perspectives for the industrial enzymatic production of glycosides. Biotechnol. Prog. 19: 1391-1402.   DOI   ScienceOn
7 Seo, D. H., J. H. Jung, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Highly selective biotransformation of arbutin to arbutin-${\alpha}$-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60: 113-118.   DOI   ScienceOn
8 Walle, T., F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle. 2004. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32: 1377-1382.   DOI   ScienceOn
9 Walle, T. 2011. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 1215: 9-15.   DOI   ScienceOn
10 Yu, L., F. Gao, L. Yang, L. Xu, Z. Wang, and H. Ye. 2012. Biotransformation of puerarin into puerarin-6''-O-phosphate by Bacillus cereus. J. Ind. Microbiol. Biotechnol. 39: 299-305.   DOI   ScienceOn
11 Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
12 Fan, E., L. Zhang, S. Jiang, and Y. Bai. 2007. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food 11: 610-614.
13 Gao, C., P. Mayon, D. A. MacManus, and E. N. Vulfson. 2000. Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters. Biotechnol. Bioeng. 71: 235-243.   DOI   ScienceOn
14 Gu, L. 2001. Studies of isoflavones and soyasaponins in soy. Ph.D. dissertation, Wuxi University of Light Industry, Wuxi, China.
15 Ha, S. J., D. H. Seo, J. H. Jung, J. Cha, T. J. Kim, Y. W. Kim, et al. 2009. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci. Biotechnol. Biochem. 73: 1505-1512.   DOI   ScienceOn
16 Henry, C., X. Vitrac, A. Decendit, R. Ennamany, S. Krisa, and J. M. Merillon. 2005. Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food Chem. 53: 798-803.   DOI   ScienceOn
17 Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657.   DOI   ScienceOn
18 Jung, J. H., D. H. Seo, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619.   DOI   ScienceOn
19 Kometani, T., T. Nishimura, T. Nakae, H. Takii, and S. Okada. 1996. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci. Biotechnol. Biochem. 60: 645-649.   DOI   ScienceOn
20 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn