• Title/Summary/Keyword: Amyloid

Search Result 626, Processing Time 0.024 seconds

Study on the Effect of KamiTongJonHaaATang Extracts on Thrombosis, Brain Ischemia and Brain damage (가미통전화어탕(加味通栓化瘀湯)이 혈전증(血栓症)과 뇌허혈증(腦虛血症) 및 뇌손상(腦損傷)에 미치는 영향(影響)에 대한 실험적(實驗的) 연구(硏究))

  • Ahn, Taek Won;Kim, Byeong Tak
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.379-401
    • /
    • 1999
  • The effect of KamiTongJonHaaATang extracts on hypercholesterolemia, platelet aggregation, pulm onary thrombosis, KCN-induced coma, forcal brain ischemia, cytotoxicity of PC12 cells induced by amyloid ${\beta}$ protein(25-35), and NO production in RAW cells stimulated lipopolysaccharide were investigated, respectively. The results were summarized as follows; 1. KTJHAT extracts showed a significant decrease of serum total cholesterol, triglyceride, phospholipid, LDL-cholesterol, and VLDL-cholesterol in hypercholesterolemia induced by 2% cholesterol diet in NZW rabbit. 2. KTJHAT extracts induced a significant inhibition of human platelet aggregation induced by thrombin and ADP but did not affect human platelet aggregation induced by collagen. 3. KTJHAT extracts showed a protective effect on pulmonary thrombosis induced by collagen and epinephrine. 4. KTJHAT extracts prolonged the duration of KCN-induced coma. 5. KTJHAT extracts showed a significant decrease of brain ischemic area and edema in MCA occlusion. Also, KTJHAT extracts showed a decrease of neurologic grade in hind limb but did not affect neurologic grade in fore limb. 6. KTJHAT extracts showed a protective effect on cytotoxicity of PC 12 cells induced by amyloid ${\beta}$ protein(25-35) in a dose dependent manner. 7. KTJHAT extracts showed a significant decrease of NO production in RAW cells induced by lipopolysaccharide. These results suggested that KTJHAT extracts might be usefully applied for prevention and treatement of thrombosis and brain damage.

  • PDF

Protective Effect of Sesaminol Glucosides on Memory Impairment and ${\beta}$, ${\gamma}$-Secretase Activity In Vivo (Sesaminol Glucosides의 기억력 회복능 및 ${\beta}$, ${\gamma}$-Secretase)

  • Lee, Sun-Young;Son, Dong-Ju;Ha, Tae-Youl;Hong, Jin-Tae
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.168-173
    • /
    • 2005
  • Alzheimers disease (AD) is the most prevalent form of neurodegenerations associated with aging in the human population. This disease is characterized by the extracellular deposition of beta-amyloid (A ${\beta}$) peptide in cerebral plaques. The A ${\beta}$ peptide is derived from the ${\beta}$-amyloid precursor protein ( ${\beta}$APP). Photolytic processing of ${\beta}$APP by ${\beta}$-secretase(beta-site APP-cleaving enzyme, BASE) and ${\gamma}$-secretase generates the A ${\beta}$ peptide. Several lines of evidence support that A ${\beta}$-induced neuronal cell death is major mechanisms of development of AD. Accordingly, the ${\beta}$-and ${\gamma}$-secretase have been implicated to be excellent targets for the treatment of AD. We previously found that sesaminol glucosides have improving effect on memory functions through anti-oxidative mechanism. In this study, to elucidate possible other mechanism (inhibition of ${\beta}$-and ${\gamma}$-secretase) of sesaminol glucosides, we examined the improving effect of sesaminol glucosides in the scopolamine (1 mg/kg/mouse)-induced memory dysfunction using water maze test in the mice. Sesaminol glucosides (3.75, 7.5 mg/kg/6ml/day p.o., for 3 weeks) reversed the latency time, distance and velocity by scopolamine in dose dependent manner. Next, ${\beta}$-and ${\gamma}$-secretase activities were determined in different regions of brain. Sesaminol glucosides dose-dependently attenuated scopolamine-induced ${\beta}$-secretase activities in cortex and hippocampous and ${\gamma}$-secretase in cortex. This study therefore suggests that sesaminol glucosides may be a useful agent for prevention of the development or progression of AD, and its inhibitory effect on secretase may play a role in the improving action of sesaminol glucosides on memory function.

The Significance on Determination of Bovine Serum Amyloid Protein A(SAA) Concentration (소 혈청 아밀로이드 단백 A(SAA) 농도 측정의 의의)

  • Kim Duck-Hwan;Lee Kwang-Won;van Ederen A.M.;Tooten P.C.J,;Niewold Th.A.;Gruys E.
    • Journal of Veterinary Clinics
    • /
    • v.10 no.1
    • /
    • pp.141-145
    • /
    • 1993
  • The present study was performed in order to clarify the significance of serum amyloid A(SAA) estimation for the diagnosis of bovine amyloidosis and SAA as a useful parameter for the health status in herds. Twelve dutch dairy cows with final diagnosis(2 with amyloidosis, 3 with acute inflammatory disease and 7 with chronic inflammatory disease) were used to charify the significance of SAA determination for the diagnosis of bovine amyloidosis. The SAA concentration in the group of inflammatory disease was higher than that of amyloldotic group. Further the SAA value in the group of acute inflammatory disease was higher than that of chronic ones. To clarify the significance of SAA estimation as a useful parameter for the health status in herds, two Korean dairy farms(A and B) were selected and the SAA concentration was determined in total 76 cows(49 from A farm and 27 from B farm). The SAA concentration in cows from A farm was ranged with 0~169%. The cows with high level of SAA(31~169%) had the disease histories(1 with retained placenta, 3 with chronic mastitis, 2 with acute mastitis, 1 with abortion and acute mastitis, 1 with ovarian dysfunction, 1 with downer cow syndrome and 1 with laceration of the teat). The SAA value in the cows from B farm was ranged with 0~29% and disease history was not detected. In conclusion the SAA determination only is thought to be difficult for the diagnosis of bovine amyloidosis. Furthermore SAA estimation is thought to be a useful parameter for the health status in herds.

  • PDF

Combination Treatment with SIP-3 Herb Formula and Donepezil: An NGS Study in the Mouse Model of Alzheimer's Disease Induced by Amyloid-β (SIP-3 한약 처방 및 도네페질의 병용 치료: 아밀로이드 베타로 유도된 알츠하이머병 생쥐 모델에서의 NGS 연구)

  • Oh, Young-je;Song, Sue-jin;Liu, Quan Feng;Son, Tae-kwon;Kim, Geun-woo;Koo, Byung-soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.30 no.4
    • /
    • pp.327-340
    • /
    • 2019
  • Objectives: Alzheimer's disease (AD) is a complex disease accompanied by slow impairment of memory and coordination leading to behavioral changes. To date, the only treatment option is to delay the progress of the disease. The purpose of this study was to investigate the synergistic effects of combination treatment with donepezil and three herbal extracts SIP-3 in the AD mouse model induced by amyloid-β (Aβ). Methods: We tested SIP-3 extracts for the cytotoxicity on Aβ-treated SH-SY5Y cells. Then the synergistic effects of SIP-3 and donepezil were evaluated in the AD mouse model using animal experiments and the next generation sequencing (NGS) study. Results: We found that co-treatment with SIP-3 extracts and donepezil increased the viability in Aβ-treated SH-SY5Y cells. The beneficial effects of the co-treatment were also observed in the Aβ-induced AD mouse model. The NGS study was performed to show that the co-treatment of SIP-3 and donepezil restored the disease phenotype closely to the normal level in the AD mouse model in terms of mRNA expression. However, the phenotypes were only partially restored. Conclusions: This study suggests that the combination treatment has a potential to be used for the treatment of AD. However, longer periods of treatment may be required.

Effects of Amomum villosum(AMV) Extract on the Alzheimer's Disease Model (사인(砂仁)이 Alzheimer's Disease 병태 모델에 미치는 영향)

  • Choi Bo-Yun;Jung In-Chul;Lee Sang-Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • This experiment was designed to investigate the effect of Amomum villosum(AMV) on the Alzheimer's disease. The effects of AMV extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell line treated by amyloid $\beta$ protein($A{\beta}$) : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA of THP-1 cell line treated by lipopolysaccharide(LPS) : AChE activity of PC-12 cell lysate treated by $A{\beta}$ : serum glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine : behavior of memory deficit mice induced by scopolamine were investigated, respectively. AMV extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$ : IL-$1{\beta}$, IL-6, TNF-$\alpha$ mRNA in THP-1 cell treated by LPS , AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. AMV extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. AMV extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that AMV extract might be usefully applied for prevention and treatment of Alzheimer's disease.

β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus

  • Park, Hye Jin;Kwon, Huiyoung;Lee, Ji Hye;Cho, Eunbi;Lee, Young Choon;Moon, Minho;Jun, Mira;Kim, Dong Hyun;Jung, Ji Wook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.74-82
    • /
    • 2020
  • Alzheimer's disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling. LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.

Neuroprotective Effects and Physicochemical Characteristics of Milk Fortified with Fibroin BF-7 (BF-7 강화 우유의 뇌기능보호 효과 및 물리화학적 특성)

  • Choi, Gooi-Hun;Jo, Mi-Na;Moon, Sun-Hee;Lim, Sung-Min;Jung, A-Ram;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.431-436
    • /
    • 2008
  • The impact of storage on the neuroprotective effects against $A\beta$-induced cell death and physicochemical characteristics of milk fortified with BF-7 were investigated. The BF-7 milk exerted protection of neuronal cells SK-N-SH from amyloid beta ($A\beta$)-induced neuronal stress. Our results showed that incubation of the cell with pretreated BF-7 milk, significantly attenuated apoptotic stress by $A\beta$, considered in cell morphology and nucleus shape. The general compositions were maintained consistently in BF-7 fortified milk (BF-7 milk). The BF-7 did not make any disturbance on pH and titratable acidity. The color change was not detected, either. Also, any microorganism had not been detected with more than 7 days storage at $4^{\circ}C$. In sensory evaluation study. the average scores of each sensory attribute were quite similar with plain milk. In conclusion, our results strongly indicate that BF-7 characteristics are quite adequate to be included in milk and BF-7 milk is still working well on neuro-protection, result in enforcing our brain and delaying neurodegeneration.

Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model

  • Kim, Ji Hyun;Wang, Qian;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.9 no.5
    • /
    • pp.480-488
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is characterized by deficits in memory and cognitive functions. The accumulation of amyloid beta peptide ($A{\beta}$) and oxidative stress in the brain are the most common causes of AD. MATERIALS/METHODS: Caffeic acid (CA) is an active phenolic compound that has a variety of pharmacological actions. We studied the protective abilities of CA in an $A{\beta}_{25-35}$-injected AD mouse model. CA was administered at an oral dose of 10 or 50 mg/kg/day for 2 weeks. Behavioral tests including T-maze, object recognition, and Morris water maze were carried out to assess cognitive abilities. In addition, lipid peroxidation and nitric oxide (NO) production in the brain were measured to investigate the protective effect of CA in oxidative stress. RESULTS: In the T-maze and object recognition tests, novel route awareness and novel object recognition were improved by oral administration of CA compared with the $A{\beta}_{25-35}$-injected control group. These results indicate that administration of CA improved spatial cognitive and memory functions. The Morris water maze test showed that memory function was enhanced by administration of CA. In addition, CA inhibited lipid peroxidation and NO formation in the liver, kidney, and brain compared with the $A{\beta}_{25-35}$-injected control group. In particular, CA 50 mg/kg/day showed the stronger protective effect from cognitive impairment than CA 10 mg/kg/day. CONCLUSIONS: The present results suggest that CA improves $A{\beta}_{25-35}$-induced memory deficits and cognitive impairment through inhibition of lipid peroxidation and NO production.

Cordycepin protects against β-amyloid and ibotenic acid-induced hippocampal CA1 pyramidal neuronal hyperactivity

  • Yao, Li-Hua;Wang, Jinxiu;Liu, Chao;Wei, Shanshan;Li, Guoyin;Wang, Songhua;Meng, Wei;Liu, Zhi-Bin;Huang, Li-Ping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.483-491
    • /
    • 2019
  • Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer's disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. ${\beta}$-Amyloid ($A{\beta}$) and ibotenic acid (IBO)-induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in $A{\beta}$ + IBO-induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine $A_1$ receptor-specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the $A{\beta}$ + IBO-induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of $A_1R$ is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.

Improvements in Cognitive and Motor Function by a Nutrient Delivery System Containing Sialic Acid from Edible Bird's Nest (제비집 시알산 유래 영양전달체(Nutrient Delivery System)의 인지기능 및 운동기능 개선 효과)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Han, In Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.614-623
    • /
    • 2020
  • The objective of this study was to produce a nutrient delivery system (NDS) using sialic acid extracted from edible bird's nest (EBN), which improves brain function in patients with Alzheimer's disease and Parkinson's disease, by affinity bead technology (ABT). The inhibitory activity of acetylcholinesterase (AChE) and pyramidal cells in the dentate gyrus of the hippocampus were analyzed to investigate the effect of a sialic acid NDS on Alzheimer's disease. Also, the effect of a sialic acid NDS on Parkinson's disease was evaluated by rota-rod test and pole test in an animal model. Among the groups treated with donepezil, EBN, and sialic acid NDS, the AChE activity was the lowest in the sialic acid NDS-treated group. The results of the hippocampus analysis of the rat model confirmed that the sialic acid NDS inhibited amyloid-beta accumulation depending upon the concentration. Also, the sialic acid NDS group showed more improvement in motor deterioration than the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced group in both the rota-rod test and pole test. Therefore, the sialic acid NDS had an effect of protecting not only Alzheimer's disease by inhibiting AChE and amyloid-beta accumulation, but Parkinson's disease by preventing neurotoxicity induced by MPTP.