Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.024

β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus  

Park, Hye Jin (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Kwon, Huiyoung (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Lee, Ji Hye (Division of Endocrinology, School of Medicine, Kyungpook National University)
Cho, Eunbi (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Lee, Young Choon (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Moon, Minho (Department of Biochemistry, College of Medicine, Konyang University)
Jun, Mira (Institute of Convergence Bio-Health, Dong-A University)
Kim, Dong Hyun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Jung, Ji Wook (Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 74-82 More about this Journal
Abstract
Alzheimer's disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling. LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.
Keywords
${\beta}$-amyrin; Amyloid ${\beta}$; Alzheimer's disease; Synaptic plasticity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 da Silva, K. A., Paszcuk, A. F., Passos, G. F., Silva, E. S., Bento, A. F., Meotti, F. C. and Calixto, J. B. (2011) Activation of cannabinoid receptors by the pentacyclic triterpene alpha,beta-amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain 152, 1872-1887.   DOI
2 Fu, A. K., Hung, K. W., Huang, H., Gu, S., Shen, Y., Cheng, E. Y., Ip, F. C., Huang, X., Fu, W. Y. and Ip, N. Y. (2014) Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 111, 9959-9964.   DOI
3 Gregoire, C. A., Bonenfant, D., Le Nguyen, A., Aumont, A. and Fernandes, K. J. (2014) Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS ONE 9, e86237.   DOI
4 Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353-356.   DOI
5 Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S. and Mattson, M. P. (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J. Neurochem. 83, 1509-1524.   DOI
6 Ishii, M., Nakahara, T., Ikeuchi, S. and Nishimura, M. (2015) beta-Amyrin induces angiogenesis in vascular endothelial cells through the Akt/endothelial nitric oxide synthase signaling pathway. Biochem. Biophys. Res. Commun. 467, 676-682.   DOI
7 Jeon, S. J., Park, H. J., Gao, Q., Lee, H. E., Park, S. J., Hong, E., Jang, D. S., Shin, C. Y., Cheong, J. H. and Ryu, J. H. (2015) Positive effects of beta-amyrin on pentobarbital-induced sleep in mice via GABAergic neurotransmitter system. Behav. Brain Res. 291, 232-236.   DOI
8 Jiang, Y., Liu, Y., Zhu, C., Ma, X., Ma, L., Zhou, L., Huang, Q., Cen, L., Pi, R. and Chen, X. (2015) Minocycline enhances hippocampal memory, neuroplasticity and synapse-associated proteins in aged C57 BL/6 mice. Neurobiol. Learn. Mem. 121, 20-29.   DOI
9 Jo, J., Whitcomb, D. J., Olsen, K. M., Kerrigan, T. L., Lo, S. C., Bru-Mercier, G., Dickinson, B., Scullion, S., Sheng, M., Collingridge, G. and Cho, K. (2011) Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat. Neurosci. 14, 545-547.   DOI
10 Kim, H. Y., Lee, D. K., Chung, B. R., Kim, H. V. and Kim, Y. (2016) Intracerebroventricular injection of amyloid-beta peptides in normal mice to acutely induce alzheimer-like cognitive deficits. J. Vis. Exp. (109), e53308.
11 Kitagishi, Y., Nakanishi, A., Ogura, Y. and Matsuda, S. (2014) Dietary regulation of PI3K/AKT/GSK-3beta pathway in Alzheimer's disease. Alzheimers Res. Ther. 6, 35.   DOI
12 Birnbaum, J. H., Bali, J., Rajendran, L., Nitsch, R. M. and Tackenberg, C. (2015) Calcium flux-independent NMDA receptor activity is required for Abeta oligomer-induced synaptic loss. Cell Death Dis. 6, e1791.   DOI
13 Krishnan, K., Mathew, L. E., Vijayalakshmi, N. R. and Helen, A. (2014) Anti-inflammatory potential of beta-amyrin, a triterpenoid isolated from Costus igneus. Inflammopharmacology 22, 373-385.   DOI
14 Ma, J., Gao, Y., Jiang, L., Chao, F. L., Huang, W., Zhou, C. N., Tang, W., Zhang, L., Huang, C. X., Zhang, Y., Luo, Y. M., Xiao, Q., Yu, H. R., Jiang, R. and Tang, Y. (2017) Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middleaged APPswe/PSEN1dE9 double transgenic Alzheimer’s disease mice. Oncotarget 8, 27676-27692.   DOI
15 Amani, M., Shokouhi, G. and Salari, A. A. (2019) Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer's disease. Psychopharmacology (Berl.) 236, 1281-1292.   DOI
16 Arbel-Ornath, M., Hudry, E., Boivin, J. R., Hashimoto, T., Takeda, S., Kuchibhotla, K. V., Hou, S., Lattarulo, C. R., Belcher, A. M., Shakerdge, N., Trujillo, P. B., Muzikansky, A., Betensky, R. A., Hyman, B. T. and Bacskai, B. J. (2017) Soluble oligomeric amyloid-beta induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol. Neurodegener. 12, 27.   DOI
17 Beurel, E., Grieco, S. F. and Jope, R. S. (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114-131.   DOI
18 Chen, T. J., Wang, D. C. and Chen, S. S. (2009) Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J. Neurosci. Res. 87, 2297-2307.   DOI
19 Chicca, A., Marazzi, J. and Gertsch, J. (2012) The antinociceptive triterpene beta-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydro-lysis without directly targeting cannabinoid receptors. Br. J. Pharmacol. 167, 1596-1608.   DOI
20 Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O'Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J. and Scheltens, P. (2007) Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734-746.   DOI
21 Ferretti, M. T., Allard, S., Partridge, V., Ducatenzeiler, A. and Cuello, A. C. (2012) Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology. J. Neuroinflammation 9, 62.
22 Nair, A. B. and Jacob, S. (2016) A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7, 27-31.   DOI
23 Maurya, R., Srivastava, A., Shah, P., Siddiqi, M. I., Rajendran, S. M., Puri, A. and Yadav, P. P. (2012) beta-Amyrin acetate and betaamyrin palmitate as antidyslipidemic agents from Wrightia tomentosa leaves. Phytomedicine 19, 682-685.   DOI
24 Mu, Y. and Gage, F. H. (2011) Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol. Neurodegener. 6, 85.   DOI
25 Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y. and Malinow, R. (2014) Engineering a memory with LTD and LTP. Nature 511, 348-352.   DOI
26 Penn, A. C., Zhang, C. L., Georges, F., Royer, L., Breillat, C., Hosy, E., Petersen, J. D., Humeau, Y. and Choquet, D. (2017) Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549, 384-388.   DOI
27 Noble, W., Garwood, C., Stephenson, J., Kinsey, A. M., Hanger, D. P. and Anderton, B. H. (2009) Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease. FASEB J. 23, 739-750.   DOI
28 Okoye, N. N., Ajaghaku, D. L., Okeke, H. N., Ilodigwe, E. E., Nworu, C. S. and Okoye, F. B. (2014) beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 52, 1478-1486.   DOI
29 Park, S. J., Ahn, Y. J., Oh, S. R., Lee, Y., Kwon, G., Woo, H., Lee, H. E., Jang, D. S., Jung, J. W. and Ryu, J. H. (2014) Amyrin attenuates scopolamine-induced cognitive impairment in mice. Biol. Pharm. Bull. 37, 1207-1213.   DOI
30 Nair, S. A., Sabulal, B., Radhika, J., Arunkumar, R. and Subramoniam, A. (2014) Promising anti-diabetes mellitus activity in rats of betaamyrin palmitate isolated from Hemidesmus indicus roots. Eur. J. Pharmacol. 734, 77-82.   DOI
31 Santos, F. A., Frota, J. T., Arruda, B. R., de Melo, T. S., da Silva, A. A., Brito, G. A., Chaves, M. H. and Rao, V. S. (2012) Antihyperglycemic and hypolipidemic effects of alpha, beta-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis. 11, 98.   DOI
32 Rodriguez, J. J., Jones, V. C., Tabuchi, M., Allan, S. M., Knight, E. M., LaFerla, F. M., Oddo, S. and Verkhratsky, A. (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS ONE 3, e2935.   DOI
33 Rodriguez, J. J., Noristani, H. N., Olabarria, M., Fletcher, J., Somerville, T. D., Yeh, C. Y. and Verkhratsky, A. (2011) Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer's disease. Curr. Alzheimer Res. 8, 707-717.   DOI
34 Rodriguez, J. J. and Verkhratsky, A. (2011) Neurogenesis in Alzheimer's disease. J. Anat. 219, 78-89.   DOI
35 Selkoe, D. J. (1991) The molecular pathology of Alzheimer’s disease. Neuron 6, 487-498.   DOI
36 Shimshek, D. R., Bus, T., Schupp, B., Jensen, V., Marx, V., Layer, L. E., Kohr, G. and Sprengel, R. (2017) Different forms of AMPA receptor mediated LTP and their correlation to the spatial working memory formation. Front. Mol. Neurosci. 10, 214.   DOI
37 Stein, E. S., Itsekson-Hayosh, Z., Aronovich, A., Reisner, Y., Bushi, D., Pick, C. G., Tanne, D., Chapman, J., Vlachos, A. and Maggio, N. (2015) Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke. Sci. Rep. 5, 7912.   DOI
38 Tapia-Rojas, C., Aranguiz, F., Varela-Nallar, L. and Inestrosa, N. C. (2016) Voluntary running attenuates memory loss, decreases neuropathological changes and induces neurogenesis in a mouse model of Alzheimer's disease. Brain Pathol. 26, 62-74.   DOI
39 Reddy, P. H. (2013) Amyloid beta-induced glycogen synthase kinase 3beta phosphorylated VDAC1 in Alzheimer's disease: implications for synaptic dysfunction and neuronal damage. Biochim. Biophys. Acta 1832, 1913-1921.   DOI
40 Szakiel, A., Paczkowski, C., Pensec, F. and Bertsch, C. (2012) Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem. Rev. 11, 263-284.   DOI
41 Thirupathi, A., Silveira, P. C., Nesi, R. T. and Pinho, R. A. (2017) beta-Amyrin, a pentacyclic triterpene, exhibits anti-fibrotic, anti-inflammatory, and anti-apoptotic effects on dimethyl nitrosamine-induced hepatic fibrosis in male rats. Hum. Exp. Toxicol. 36, 113-122.   DOI
42 Tiwari, S. K., Seth, B., Agarwal, S., Yadav, A., Karmakar, M., Gupta, S. K., Choubey, V., Sharma, A. and Chaturvedi, R. K. (2015) Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in an amyloid-beta toxin-induced alzheimer rat model via the phosphatidylinositol 3-kinase (PI3K)/Akt/Wnt/beta-catenin pathway. J. Biol. Chem. 290, 28540-28558.   DOI
43 Tozzi, A., Sclip, A., Tantucci, M., de Iure, A., Ghiglieri, V., Costa, C., Di Filippo, M., Borsello, T. and Calabresi, P. (2015) Region-and agedependent reductions of hippocampal long-term potentiation and NMDA to AMPA ratio in a genetic model of Alzheimer's disease. Neurobiol. Aging 36, 123-133.   DOI
44 Viola, K. L. and Klein, W. L. (2015) Amyloid beta oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129, 183-206.   DOI
45 Ziabreva, I., Perry, E., Perry, R., Minger, S. L., Ekonomou, A., Przyborski, S. and Ballard, C. (2006) Altered neurogenesis in Alzheimer's disease. J. Psychosom. Res. 61, 311-316.   DOI
46 Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539.   DOI
47 Yan, R., Fan, Q., Zhou, J. and Vassar, R. (2016) Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer's disease. Neurosci. Biobehav. Rev. 65, 326-340.   DOI
48 Yi, J. H., Baek, S. J., Heo, S., Park, H. J., Kwon, H., Lee, S., Jung, J., Park, S. J., Kim, B. C., Lee, Y. C., Ryu, J. H. and Kim, D. H. (2018) Direct pharmacological Akt activation rescues Alzheimer’s disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology 128, 282-292.   DOI
49 Zhu, G., Li, J., He, L., Wang, X. and Hong, X. (2015) MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br. J. Pharmacol. 172, 2354-2368.   DOI