• Title/Summary/Keyword: Ammonia sensor

검색결과 70건 처리시간 0.028초

Highly Sensitive and Selective Trimethylamine Sensor Using Yolk-shell Structured Mo-doped Co3O4 Spheres

  • Kim, Tae-Hyung;Kim, Ki Beom;Lee, Jong-Heun
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.271-276
    • /
    • 2019
  • Pure and 0.5, 1, 2, 5, and 10 at% of Mo-doped $Co_3O_4$ yolk-shell spheres were synthesized by ultrasonic spray pyrolysis of droplets containing Co nitrate, ammonium molybdate, and sucrose and their gas sensing characteristics to 5 ppm trimethylamine (TMA), ethanol, p-xylene, toluene, ammonia, carbon monoxide, and benzene were measured at $225-325^{\circ}C$. The sensor using pure $Co_3O_4$ yolk-shell spheres showed the highest response to p-xylene and very low response to TMA at $250^{\circ}C$, while the doping of Mo into $Co_3O_4$ tended to increase the overall responses of gas sensors. In particular, the sensor using 5 at% Mo-doped $Co_3O_4$ yolk-shell spheres exhibited the high response to TMA with low cross-responses to other interfering gases. The high response and selectivity of Mo-doped $Co_3O_4$ yolk-shell spheres to TMA are attributed to the electronic sensitization by higher valent Mo doping and acid-base interaction between TMA and Mo components.

실리카 졸-겔막을 이용한 pH 광학센서 (A pH Optosensor Based on Fluoresence from Nile Blue Encapsulated within Silica Sol-Gel Film)

  • 이정민;이명;이상학;김영선;김창진;이부형
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.169-174
    • /
    • 2004
  • A fiber optic pH sensor has been fabricated using nile blue entrapped in an ammonia catalyzed silica sol-gel film coated on glass substrate by dip-coating. The sensor was fixed on the end of an optical fiber. The sensor showed pH sensitivity when dipped into liquids at different pHs. Linear and reproducible responses were obtained in standard buffer solutions in the pH range $6.0{\sim}8.5$, which encompasses the clinically-relevant range. The effects of interferences on the determination of pH were also investigated. The sensors were successfully applied to the determination of pH in different commercial ionic drinks.

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제34권5호
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

스플리트빔 형태의 고정도 단위 실리카 측정기술 개발에 관한 연구 (A Study on the Development of a pub level Silica Measuring Technology by the Split-beam Type System)

  • 정경열;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.382-388
    • /
    • 2002
  • Dissolved silica is one of fatal components at a boiler facility Therefore, a dissolved silica measurement system should be equipped for managing efficiently the boiler facility. Most of silica measurement systems are composed of a sensor module of single-beam type structure, and silica density is measured with a infrared spectrometry using the Lambert-beer method. However, such a system occurs measuring error of large range and inconsistency of a light source, because of measuring a standard sample and a measuring sample alternatively. This paper introduces a method that the sensor module has a split-beam type structure and a tungsten lamp. The proposed system can measure silica density quickly and precisely more than those composing of a single-beam type structure, because of measuring and comparing with two samples at a same time. And examination results are shown to compare efficiencies of the system and existing commercial products, and for an ammonia influence.

LTCC 를 이용한 SnO2 가스 센서 ([ SnO2 ] Gas Sensors Using LTCC (Low Temperature Co-fired Ceramics))

  • 조평석;강종윤;김선중;김진상;윤석진;;이종흔
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.69-72
    • /
    • 2008
  • A sensor element array for combinatorial solution deposition research was fabricated using LTCC (Low-temperature Co-fired Ceramics). The designed LTCC was co-fired at $800^{\circ}C$ for 1 hour after lamination at $70^{\circ}C$ under 3000 psi for 30 minutes. $SnO_2$ sol was prepared by a hydrothermal method at $200^{\circ}C$ for 3 hours. Tin chloride and ammonium carbonate were used as raw materials and the ammonia solution was added to a Teflon jar. 20 droplets of $SnO_2$ sol were deposited onto a LTCC sensor element and this was heat treated at $600^{\circ}C$ for 5 hours. The gas sensitivity ($S\;=\;R_a/R_g$) values of the $SnO_2$ sensor and 0.04 wt% Pd-added $SnO_2$ sensor were measured. The 0.04 wt% Pd-added $SnO_2$ sensor showed higher sensitivity (S = 8.1) compared to the $SnO_2$ sensor (S = 5.95) to 200 ppm $CH_3COCH_3$ at $400^{\circ}C$.

암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구 (A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane)

  • 강희석;이의종;김형수;장암
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.

화염 분무 열분해법으로 합성된 Cr-Co3O4 나노입자 자일렌 가스센서 (Xylene Sensor Using Cr-doped Cr-Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis)

  • 정성용;조영무;강윤찬;이종흔
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.112-117
    • /
    • 2020
  • Xylene is a hazardous volatile organic compound that should be precisely measured to monitor indoor air quality. However, the selective and sensitive detection of ppm-level xylene using oxide-semiconductor gas sensors remains a challenge. In this study, pure and Cr-doped Co3O4 nanoparticles (NPs) were prepared using flame spray pyrolysis, and their gas-sensing characteristics to 5-ppm xylene at 250 ℃ were investigated. The 4 at% Cr-doped Co3O4 NPs exhibited a high gas response to 5-ppm xylene (resistance ratio to gas and air = 39.1) and negligible cross-responses to other representative and ubiquitous indoor pollutants such as ethanol, benzene, formaldehyde, carbon monoxide, and ammonia. In this paper, the enhancement of the gas response and selectivity of Co3O4 NPs to xylene by Cr doping was discussed in relation to the catalytic promotion of the gas-sensing reaction. This sensor can be used to monitor indoor xylene.

산화물 반도체를 이용한 최신 호기센서 기술 동향 (Recent Developments in Metal Oxide Gas Sensors for Breath Analysis)

  • 윤지욱;이종흔
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

루테늄이 첨가된 텅스텐 산화물을 이용한 마이크로 가스 센서의 암모니아 가스 감지 특성 (Gas Sensing Characteristics of Ru doped-WO3 Micro Gas Sensors)

  • 이회중;윤진호;김범준;장현덕;김정식
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.395-399
    • /
    • 2011
  • In this study, micro gas sensors for ammonia gas were prepared by adopting MEMS technology and using a sol-gel process. Three types of sensors were prepared via different synthesis routes starting with W sol and Ru sol mixture. This mixture was deposited on a MEMS platform and the platform was subsegueny heated to a temperature of $350^{\circ}C$. The topography and crystal structure of the sensing film were studied using FE-SEM and XRD. The response of the gas sensor to $NH_3$ gas was examined at various operating temperatures and gas concentrations. The sensor response increased almost linearly with gas concentration and the best sensing response was obtained at $333^{\circ}C$ for 5.0 ppm $NH_3$ for the specimen prepared by coating $WO_3$ powders with the Ru sol mixture.

$Al^{3+}$ 이온이 첨가된 ZnO 반도체 가스 센서의 전기적 특성에 관한 연구 (A Study on the Electrical Characterisitics of $Al^{3+}$-doped ZnO Semiconductor Gas Sensor)

  • 정의남;이건형;김종대;김창욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.245-247
    • /
    • 1987
  • In this thesis, ZnO semiconductor gas sensors doped by the $Al^{3+}$ were fabricated by the miexed oxide method. The specimens were sintered for 5(hr) at $1000-1200^{\circ}C$ and the I-V, sensitivity were investigated in acetone gas or ammonia gas. As a result, I-V curves of specimens as a function of temperature variation showed characteristics of linear resistor that the current was proportional to the, temperature at constant voltage. For the sensitivity of acetone, 1Wt $Al^{3+}$-ZnO has the hight 0.91, ammonia gas, 2Wt $Al^{3+}$-ZnO specimen has the hight 0.90. Hence, the operating temperature of specimens were both $300^{\circ}C$.

  • PDF