Browse > Article
http://dx.doi.org/10.5369/JSST.2020.29.2.112

Xylene Sensor Using Cr-doped Cr-Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis  

Jeong, Seong-Yong (Department of Materials Science and Engineering, Korea University)
Jo, Young-Moo (Department of Materials Science and Engineering, Korea University)
Kang, Yun Chan (Department of Materials Science and Engineering, Korea University)
Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
Publication Information
Journal of Sensor Science and Technology / v.29, no.2, 2020 , pp. 112-117 More about this Journal
Abstract
Xylene is a hazardous volatile organic compound that should be precisely measured to monitor indoor air quality. However, the selective and sensitive detection of ppm-level xylene using oxide-semiconductor gas sensors remains a challenge. In this study, pure and Cr-doped Co3O4 nanoparticles (NPs) were prepared using flame spray pyrolysis, and their gas-sensing characteristics to 5-ppm xylene at 250 ℃ were investigated. The 4 at% Cr-doped Co3O4 NPs exhibited a high gas response to 5-ppm xylene (resistance ratio to gas and air = 39.1) and negligible cross-responses to other representative and ubiquitous indoor pollutants such as ethanol, benzene, formaldehyde, carbon monoxide, and ammonia. In this paper, the enhancement of the gas response and selectivity of Co3O4 NPs to xylene by Cr doping was discussed in relation to the catalytic promotion of the gas-sensing reaction. This sensor can be used to monitor indoor xylene.
Keywords
Cr-doped $Co_3O_4$; Xylene; Flame spray pyrolysis; Gas sensors; Oxide semiconductors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang Z. Wang, and C. Wang, "A highly sensitive and fast-responding sensor based on electrospun $In_2O_3$ nanofivers", Sens. Actuator B-Chem., Vol. 142, No. 1, pp. 61-65, 2009.   DOI
2 C. Sun, X. Su, F. Xiao, C. Niu, and J. Wang, "Synthesis of nearly monodisperse $Co_3O_4$ nanocubes via a microwaveassisted solvothermal process and their gas sensing characteristics", Sens. Actuator B-Chem., Vol. 157, No. 2, pp. 681-685, 2011.   DOI
3 J. Muzart, "Chromium-catalyzed oxidations in organic synthesis", Chem. Rev., Vol. 92, No. 1, pp. 113-140, 1992.   DOI
4 C. Subrahmanyam, B. Louis, F. Rainone, B. Viswanathan, A. Renken, and T. K. Varadarajan, "Catalytic oxidation of toluene with molecular oxygen over Cr-substituted mesoporous materials", Appl. Catal., A, Vol. 241, No. 1-2, pp. 205-215, 1992.
5 Y. Wang, X. Yuan, X. Liu, J. Ren, W. Tong, Y. Wang, and G. Lu, "Mesoporous single-crystal $Cr_2O_3$: Synthesis, characterization, and its activity in toluene removal", Solid State Sci., Vol. 10, No. 9, pp. 1117-1123, 2008.   DOI
6 Y. Xia, H. Dai, H. Jiang, J. Deng, H. He, and C. T. Au, "Mesoporous Chromia with Ordered Three-Dimensional Structures for the Complete Oxidation of Toluene and Ethyl Acetate", Environ. Sci. Technol., Vol. 43, No. 21, pp. 8355-8360, 2009.   DOI
7 K. H. Lee, B.-Y. Kim, J.-W. Yoon, and J.-H. Lee, "Extremely selective detection of ppb levels of indoor xylene using $CoCr_2O_4$ hollow spheres activated by Pt doping", Chem. Commun., Vol. 55, No. 6, pp. 751-754, 2019.   DOI
8 D. Smith and P. Spanel, "Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis", Mass Spectrom. Rev., Vol. 24, No. 5, pp. 661-700, 2005.   DOI
9 A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, "Detection of CO and $O_2$ Using Tin Oxide Nanowire Sensors", Adv. Mater., Vol. 15, No. 12, pp. 997-1000, 2003.   DOI
10 A. Sanger, S. B. Kang, M. H. Jeong, M. J. Im, I. Y. Choi, C. U. Kim, H. Lee, Y. M. Kwon, J. M. Baik, H. W. Jang, and K. J. Choi, "Morphology-Controlled Aluminum-Doped Zinc Oxide Nanofibers for Highly Sensitive $NO_2$ Sensors with Full Recovery at Room Temperature", Adv. Sci., Vol. 5, No. 9, pp. 1800816(1)-1800816(8), 2018.   DOI
11 J. Shin, S.-J. Choi, I. Lee, D.-Y. Youn, C. O. Park, J.-H. Lee, H. L. Tuller, and I.-D. Kim, "Thin-Wall Assembled $SnO_2$ Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes", Adv. Funct. Mater., Vol. 23, No. 19, pp. 2357-2367, 2013.   DOI
12 Y. G. Song, J. Y. Park, J. M. Suh, Y.-S. Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B.-K. Ju, and C.-Y. Kang, "Heterojunction Based on Rh-Decorated $WO_3$ Nanorods for Morphological Change and Gas Sensor Application Using the Transition Effect", Chem. Mater., Vol. 31, No. 1, pp. 207-215, 2019.   DOI
13 S. Park, S. Kim, G.-J. Sun, and C. Lee, "Synthesis, Structure, and Ethanol Gas Sensing Properties of $In_2O_3$ Nanorods Decorated with $Bi_2O_3$ Nanoparticles", ACS Appl. Mater. Interfaces, Vol. 7, No. 15, pp. 8138-8146, 2015.   DOI
14 J.-H. Lee, "Gas Sensors using Hierarchical and Hollow Oxide Nanostructures: Overview", Sens. Actuator B-Chem., Vol. 140, No. 1, pp. 319-336, 2009.   DOI
15 W. Lindinger, A. Hansel, and A. Jordan, "Proton-transferreaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels", Chem. Soc. Rev., Vol. 27, No. 5, pp. 347-375, 1998.   DOI
16 S.-Y. Jeong, J.-W. Yoon, T.-H. Kim, H.-M. Jeong, C.-S. Lee, Y. C. Kang, and J.-H. Lee, "Ultra-selective detection of sub-ppm-level benzene using $Pd-SnO_2$ yolk-shell microreactors with a catalytic $Co_3O_4$ overlayer for monitoring air quality", J. Mater. Chem. A, Vol. 5, No. 4, pp. 1446-1454, 2017.   DOI
17 https://www.atsdr.cdc.gov/toxprofiles/tp71.pdf (retrieved on May 20, 2020).
18 M. L. Kantam, P. Sreekanth, K. K. Rao, T. P. Kumar, B. P. C. Rao, and B. M. Choudary, "An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene", Catal. Lett., Vol. 81, No. 3-4, pp. 223-232, 2002.   DOI
19 S. Bakand, C. Winder, C. Khalil, and A. Hayes, "A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds", J. Environ. Monit., Vol. 8, No. 1, pp. 100-105, 2006.   DOI
20 https://www.atsdr.cdc.gov/toxguides/toxguide-71.pdf (retrieved on May 20, 2020).
21 J. J. Langenfeld, S. B. Hawthorne, and D. J. Miller, "Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction", Anal. Chem., Vol. 68, No. 1, pp. 144-155, 1996.   DOI
22 P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkruger, and G. Marowsky, "Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence", Appl. Phys. B, Vol. 67, No. 4, pp. 497-504, 1998.   DOI
23 H.-J. Kim, J.-W. Yoon, K.-I. Choi, H. W. Jang, A. Umar, and J.-H. Lee, "Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures", Nanoscale, Vol. 5, No. 15, pp. 7066-7073, 2013.   DOI
24 A. Mirzaei, J.-H. Kim, H. W. Kim, and S. S. Kim, "Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review", J. Mater. Chem. C, Vol. 6, No. 16, pp 4342-4370, 2018.   DOI
25 J.-W. Yoon, H.-J. Kim, H.-M. Jeong, and J.-H. Lee, "Gas sensing characteristics of p-type $Cr_2O_3\;and\;Co_3O_4$ nanofibers depending on inter-particle connectivity", Sens. Actuator B-Chem., Vol. 202, pp. 263-271, 2014.   DOI
26 Y.-M. Jo, T.-H. Kim, C.-S. Lee, K. Lim, C. W. Na, F. Abdel-Hady, A. A. Wazzan, and J.-H. Lee, "Metal-Organic Framework-Derived Hollow Hierarchical $Co_3O_4$ Nanocages with Tunable Size and Morphology: Ultrasensitive and Highly Selective Detection of Methylbenzenes", ACS Appl. Mater. Interfaces, Vol. 10, No. 10, pp. 8860-8868, 2018.   DOI
27 H.-J. Kim and J.-H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuator B-Chem., Vol. 192, pp. 607-627, 2014.   DOI
28 J.-W. Yoon, S. H. Choi, J.-S. Kim, H. W. Jang, Y. C. Kang, and J.-H. Lee, "Trimodally porous $SnO_2$ nanospheres with three dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector", NPG Asia Mater., Vol. 8, No. 3, pp. e244(1)-e244(8), 2016.
29 Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, and X. Wu, "Hierarchical $SnO_2$ Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications", ACS Appl. Mater. Interfaces, Vol. 6, No. 3, pp. 2174-2184, 2014.   DOI
30 L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection", Sens. Actuator B-Chem., Vol. 162, No. 1, pp. 237-243, 2012.   DOI