DOI QR코드

DOI QR Code

Xylene Sensor Using Cr-doped Cr-Co3O4 Nanoparticles Prepared by Flame Spray Pyrolysis

화염 분무 열분해법으로 합성된 Cr-Co3O4 나노입자 자일렌 가스센서

  • Jeong, Seong-Yong (Department of Materials Science and Engineering, Korea University) ;
  • Jo, Young-Moo (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yun Chan (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • 정성용 (고려대학교 신소재공학부) ;
  • 조영무 (고려대학교 신소재공학부) ;
  • 강윤찬 (고려대학교 신소재공학부) ;
  • 이종흔 (고려대학교 신소재공학부)
  • Received : 2020.03.24
  • Accepted : 2020.03.28
  • Published : 2020.03.31

Abstract

Xylene is a hazardous volatile organic compound that should be precisely measured to monitor indoor air quality. However, the selective and sensitive detection of ppm-level xylene using oxide-semiconductor gas sensors remains a challenge. In this study, pure and Cr-doped Co3O4 nanoparticles (NPs) were prepared using flame spray pyrolysis, and their gas-sensing characteristics to 5-ppm xylene at 250 ℃ were investigated. The 4 at% Cr-doped Co3O4 NPs exhibited a high gas response to 5-ppm xylene (resistance ratio to gas and air = 39.1) and negligible cross-responses to other representative and ubiquitous indoor pollutants such as ethanol, benzene, formaldehyde, carbon monoxide, and ammonia. In this paper, the enhancement of the gas response and selectivity of Co3O4 NPs to xylene by Cr doping was discussed in relation to the catalytic promotion of the gas-sensing reaction. This sensor can be used to monitor indoor xylene.

Keywords

References

  1. S. Bakand, C. Winder, C. Khalil, and A. Hayes, "A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds", J. Environ. Monit., Vol. 8, No. 1, pp. 100-105, 2006. https://doi.org/10.1039/B509812B
  2. https://www.atsdr.cdc.gov/toxguides/toxguide-71.pdf (retrieved on May 20, 2020).
  3. https://www.atsdr.cdc.gov/toxprofiles/tp71.pdf (retrieved on May 20, 2020).
  4. J. J. Langenfeld, S. B. Hawthorne, and D. J. Miller, "Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction", Anal. Chem., Vol. 68, No. 1, pp. 144-155, 1996. https://doi.org/10.1021/ac950862w
  5. P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkruger, and G. Marowsky, "Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence", Appl. Phys. B, Vol. 67, No. 4, pp. 497-504, 1998. https://doi.org/10.1007/s003400050535
  6. W. Lindinger, A. Hansel, and A. Jordan, "Proton-transferreaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels", Chem. Soc. Rev., Vol. 27, No. 5, pp. 347-375, 1998. https://doi.org/10.1039/a827347z
  7. D. Smith and P. Spanel, "Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis", Mass Spectrom. Rev., Vol. 24, No. 5, pp. 661-700, 2005. https://doi.org/10.1002/mas.20033
  8. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, "Detection of CO and $O_2$ Using Tin Oxide Nanowire Sensors", Adv. Mater., Vol. 15, No. 12, pp. 997-1000, 2003. https://doi.org/10.1002/adma.200304889
  9. A. Sanger, S. B. Kang, M. H. Jeong, M. J. Im, I. Y. Choi, C. U. Kim, H. Lee, Y. M. Kwon, J. M. Baik, H. W. Jang, and K. J. Choi, "Morphology-Controlled Aluminum-Doped Zinc Oxide Nanofibers for Highly Sensitive $NO_2$ Sensors with Full Recovery at Room Temperature", Adv. Sci., Vol. 5, No. 9, pp. 1800816(1)-1800816(8), 2018. https://doi.org/10.1002/advs.201800816
  10. J. Shin, S.-J. Choi, I. Lee, D.-Y. Youn, C. O. Park, J.-H. Lee, H. L. Tuller, and I.-D. Kim, "Thin-Wall Assembled $SnO_2$ Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes", Adv. Funct. Mater., Vol. 23, No. 19, pp. 2357-2367, 2013. https://doi.org/10.1002/adfm.201202729
  11. Y. G. Song, J. Y. Park, J. M. Suh, Y.-S. Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B.-K. Ju, and C.-Y. Kang, "Heterojunction Based on Rh-Decorated $WO_3$ Nanorods for Morphological Change and Gas Sensor Application Using the Transition Effect", Chem. Mater., Vol. 31, No. 1, pp. 207-215, 2019. https://doi.org/10.1021/acs.chemmater.8b04181
  12. S. Park, S. Kim, G.-J. Sun, and C. Lee, "Synthesis, Structure, and Ethanol Gas Sensing Properties of $In_2O_3$ Nanorods Decorated with $Bi_2O_3$ Nanoparticles", ACS Appl. Mater. Interfaces, Vol. 7, No. 15, pp. 8138-8146, 2015. https://doi.org/10.1021/acsami.5b00972
  13. J.-H. Lee, "Gas Sensors using Hierarchical and Hollow Oxide Nanostructures: Overview", Sens. Actuator B-Chem., Vol. 140, No. 1, pp. 319-336, 2009. https://doi.org/10.1016/j.snb.2009.04.026
  14. A. Mirzaei, J.-H. Kim, H. W. Kim, and S. S. Kim, "Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review", J. Mater. Chem. C, Vol. 6, No. 16, pp 4342-4370, 2018. https://doi.org/10.1039/C8TC00245B
  15. J.-W. Yoon, H.-J. Kim, H.-M. Jeong, and J.-H. Lee, "Gas sensing characteristics of p-type $Cr_2O_3\;and\;Co_3O_4$ nanofibers depending on inter-particle connectivity", Sens. Actuator B-Chem., Vol. 202, pp. 263-271, 2014. https://doi.org/10.1016/j.snb.2014.05.081
  16. Y.-M. Jo, T.-H. Kim, C.-S. Lee, K. Lim, C. W. Na, F. Abdel-Hady, A. A. Wazzan, and J.-H. Lee, "Metal-Organic Framework-Derived Hollow Hierarchical $Co_3O_4$ Nanocages with Tunable Size and Morphology: Ultrasensitive and Highly Selective Detection of Methylbenzenes", ACS Appl. Mater. Interfaces, Vol. 10, No. 10, pp. 8860-8868, 2018. https://doi.org/10.1021/acsami.8b00733
  17. H.-J. Kim, J.-W. Yoon, K.-I. Choi, H. W. Jang, A. Umar, and J.-H. Lee, "Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures", Nanoscale, Vol. 5, No. 15, pp. 7066-7073, 2013. https://doi.org/10.1039/c3nr01281f
  18. H.-J. Kim and J.-H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuator B-Chem., Vol. 192, pp. 607-627, 2014. https://doi.org/10.1016/j.snb.2013.11.005
  19. J.-W. Yoon, S. H. Choi, J.-S. Kim, H. W. Jang, Y. C. Kang, and J.-H. Lee, "Trimodally porous $SnO_2$ nanospheres with three dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector", NPG Asia Mater., Vol. 8, No. 3, pp. e244(1)-e244(8), 2016.
  20. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, and X. Wu, "Hierarchical $SnO_2$ Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications", ACS Appl. Mater. Interfaces, Vol. 6, No. 3, pp. 2174-2184, 2014. https://doi.org/10.1021/am405301v
  21. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection", Sens. Actuator B-Chem., Vol. 162, No. 1, pp. 237-243, 2012. https://doi.org/10.1016/j.snb.2011.12.073
  22. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang Z. Wang, and C. Wang, "A highly sensitive and fast-responding sensor based on electrospun $In_2O_3$ nanofivers", Sens. Actuator B-Chem., Vol. 142, No. 1, pp. 61-65, 2009. https://doi.org/10.1016/j.snb.2009.07.031
  23. C. Sun, X. Su, F. Xiao, C. Niu, and J. Wang, "Synthesis of nearly monodisperse $Co_3O_4$ nanocubes via a microwaveassisted solvothermal process and their gas sensing characteristics", Sens. Actuator B-Chem., Vol. 157, No. 2, pp. 681-685, 2011. https://doi.org/10.1016/j.snb.2011.05.039
  24. J. Muzart, "Chromium-catalyzed oxidations in organic synthesis", Chem. Rev., Vol. 92, No. 1, pp. 113-140, 1992. https://doi.org/10.1021/cr00009a005
  25. C. Subrahmanyam, B. Louis, F. Rainone, B. Viswanathan, A. Renken, and T. K. Varadarajan, "Catalytic oxidation of toluene with molecular oxygen over Cr-substituted mesoporous materials", Appl. Catal., A, Vol. 241, No. 1-2, pp. 205-215, 1992.
  26. Y. Wang, X. Yuan, X. Liu, J. Ren, W. Tong, Y. Wang, and G. Lu, "Mesoporous single-crystal $Cr_2O_3$: Synthesis, characterization, and its activity in toluene removal", Solid State Sci., Vol. 10, No. 9, pp. 1117-1123, 2008. https://doi.org/10.1016/j.solidstatesciences.2007.11.018
  27. Y. Xia, H. Dai, H. Jiang, J. Deng, H. He, and C. T. Au, "Mesoporous Chromia with Ordered Three-Dimensional Structures for the Complete Oxidation of Toluene and Ethyl Acetate", Environ. Sci. Technol., Vol. 43, No. 21, pp. 8355-8360, 2009. https://doi.org/10.1021/es901908k
  28. K. H. Lee, B.-Y. Kim, J.-W. Yoon, and J.-H. Lee, "Extremely selective detection of ppb levels of indoor xylene using $CoCr_2O_4$ hollow spheres activated by Pt doping", Chem. Commun., Vol. 55, No. 6, pp. 751-754, 2019. https://doi.org/10.1039/C8CC08186G
  29. S.-Y. Jeong, J.-W. Yoon, T.-H. Kim, H.-M. Jeong, C.-S. Lee, Y. C. Kang, and J.-H. Lee, "Ultra-selective detection of sub-ppm-level benzene using $Pd-SnO_2$ yolk-shell microreactors with a catalytic $Co_3O_4$ overlayer for monitoring air quality", J. Mater. Chem. A, Vol. 5, No. 4, pp. 1446-1454, 2017. https://doi.org/10.1039/C6TA09397C
  30. M. L. Kantam, P. Sreekanth, K. K. Rao, T. P. Kumar, B. P. C. Rao, and B. M. Choudary, "An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene", Catal. Lett., Vol. 81, No. 3-4, pp. 223-232, 2002. https://doi.org/10.1023/A:1016537325179