• Title/Summary/Keyword: Ammonia removal rate

Search Result 224, Processing Time 0.021 seconds

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

Evaluation of Biological Aerated Filter Position on Water Treatment Processes for Water Quality Improvement (상수원수 전처리 시 효율향상을 위한 생물여과 반응기 위치선정)

  • Choi, Hyung-Joo;Choi, Dong-Ho;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • This study was the effectiveness of two downflow BAF(Biological Aerated Filter) systems at conventional water treatment system. A BAF reactor placed in front of coagulation and sedimentation tanks(Mode A) and after coagulation and sedimentation tanks(Mode B) that were compared in terms of removal of suspended particles, organic matters, and ammonia nitrogen. The suspended particles removal efficiency was over 80% for both Mode A and B, although Mode A gave slightly better results. $BOD_5$ removal and nitrification efficiencies were more than 90% for both reactor. The organic matter and ammonia removals were also superior in the Mode A. The biofilm thickness and biomass increased as increment of EBCT and the upper part of reactor more about 30% than lower part. The specific oxygen uptake rate(SOUR) was higher the upper part of reactor and Mode A than the lower part of reactor and Mode B. A cost analysis showed that the Mode A system was more cost effectiveness. It could save the coagulant dose by about 67% and the chlorine demand by about 95%. The ideal place to put the BAF reactor was in front of the coagulation/sedimentation process.

Ammonia Removal by using RBC in Recirculating Aquaculture System (RBC를 이용한 양어장수 암모니아 제거)

  • KIM Byong-Jin;LIM Sung-Il;SUH Kuen-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.622-630
    • /
    • 1998
  • Rotating Biological Contactor (RBC) was tested for the removal of total ammonia nitrogen (TAN) by using simulated aquaculture system. RBC performance was evaluated by controlling revolution rate of disk and hydraulic residence tile (HRT). The optimum revolution rate of disk was 4 rpm, As HRT of RBC was increased, TAN removal efficiency of RBC and TAN concentration of rearing water were increased. HRT for maintaining lowest TAN concentration of rearing water was 9.5 minutes and at that condition TAN concentration of rearing tank was $1.03 g/m^3$

  • PDF

Nitrification Efficiency of the Fluidized Sand Biofilter by TAN Leading Rates and Temperatures in the Simulated Seawater Aquaculture Condition (해수 조건에서 모래유동층 여과조의 TAN 부하량과 수온에 따른 질산화 효율)

  • Park, Jeong-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.6
    • /
    • pp.347-352
    • /
    • 2005
  • These experiments investigated the conditioning pattern and the nitrification efficiency of a fluidized sand biofilter (FSB) for seawater application. The FSB fed artificial nutrient was fully conditioned within 22 weeks. The maximum nitrification efficiency of the FSB was achieved at a superficial water velocity (SWV) of 1.0 cm/sec. After fixing the superficial water velocity at 1.0 cm/sec, the nitrification rates of the FSB were assessed at 3 total ammonia nitrogen (TAN) loading rates (250, 500, 1,000 g TAN/$m^3$/day) and 3 water temperatures (12, 16, $20^{\circ}C$). The TAN concentration in the simulated culture tank ranged from 2.87 to 9.72 mg/L at TAN loading rate of 1,000 g TAN/$m^3$/day, while that ranged from 0.45 to 1.26 mg/L at TAN loading rate of 500 g TAN/$m^3$/day. The ranges of TAN concentration in the former were too high for aquatic organisms and those in the latter were acceptable. Therefore, the safe TAN loading rate for the FSB in seawater conditions was decided as 500 g TA/$m^3$/day. From these results, daily TAN removal rates (g TAN/$m^3$/day) of FSB under conditions of inlet TAN concentration (C, mg/L) and water temperature (T, $^{\circ}C$) were calculated by the following non-linear multi-regression equation: TAN removal rate: f(z)=-1,311.295+655.714LnT+225.775LnC ($r^2=0.962$).

Phosphorus and Nitrogen Reduction from Animal Wastewater with MAP Process (축산폐수에서 질소$\cdot$인의 추출을 위한 MAP공정 개발)

  • Oh I. H.;Lee J. H.;Jeung D. S.;Jo J. W.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2005
  • To reduce phosphorus and nitrogen from the swine wastewater, magnesium chloride $(MgCl_2)$ was used as a reaction material for both soluble phosphorus (SP) and ammonia-nitrogen (AN). The initial value of SP content were $471mg/\ell$ far aeration test and $515 mg/\ell$ for NaOH addition test, but treatment of $MgCl_2$ reduced SP value to $5mg/\ell$ and $4mg/\ell$. The removal efficiency of $MgCl_2$ for SP showed $99\%$ in both treatment, and the removal efficiency of $MgCl_2$ for AN showed $15\%$ with treatment of aeration and $18\%$ with NaOH. All the experiments were done in a low temperature of 6 to $8^{\circ}C$, suggesting that this methods are possibly able to apply to a cold weather conditions. Moreover, the struvite crystal structure was identified by electronic microscope, implying that $MgCl_2$ is an effective material for removal of SP from swine wastewater In addition to the increased removal rate of the AN in wastewater, both $MgCl_2$ and $KH_2PO_4$ were added. The SP value was reduced by $99\%$ with 2g addition of the phosphate. The SP removal rate by 4g addition of the phosphate was increased only as $15-19\%$, but the quantity of removed SP was higher than that of 2g addition test. The value of AN was not reduced as expected by adding $KH_2PO_4$. The AN removal rate were low as $18\%$ and $15\%$ like as the level of the former test with $MgCl_2$ alone. Therefore, it is needed to examine closely the reaction mechanism f3r reducing both SP and AN simultaneously.

  • PDF

Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트 물질에 의한 암모니아성 질소의 흡착 특성)

  • Lee, Chang-Han;Hyun, Sung-Su;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1261-1274
    • /
    • 2020
  • The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).

Developmemt of Rice Husk Pellets as Bio-filter Media of Bio Scrubber Odor Removal System (왕겨펠렛 생물담체 개발 및 이를 이용한 bio scrubber형 악취제거 시스템 성능평가)

  • Bae, Jiyeol;Han, Sangjong;Park, Ki Ho;Kim, Kwang-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.554-566
    • /
    • 2018
  • The rice husk contains nutrients which can be easily utilized by microorganisms, and also has a water retaining ability, which played a crucial part in enabling it to become a biofilter media. In this study, we evaluated the applicability of rice husk pellet bio-scrubber as a microbiological carrier. The pelletization experiment of rice husk as a biological media was performed using PVA and EVA binder. Also, the feasibility tests of rice husk as a biological media for odor removal were carried out in order to know whether rice-husk contains useful components as a media for microbiological growth or not. Lastly, a combined test for odor gas absorption and biological oxidation was conducted using a lab scale bio-filter set-up packed with rice-husk pellets as wet-scrubber. The major components of the rice husk were carbon, hydrogen, nitrogen, and oxygen, while carbon acted as the main ingredient which comprised up to 23.00%. The C : N : P ratio was calculated as 45 : 1 : 2. Oxygen uptake rate, yield and decay rate of the rice husk eluent was calculated to be $0.0049mgO_2/L/sec$, 0.24 mgSS/mgCOD and 0.004 respectively. The most stable form of rice husk pellets was produced when the weight of the rice husk, EVAc, PVAc, and distilled water was 10 : 2 : 0.2 : 10. The prepared rice husk pellets had an apparent density of 368 g/L and a porosity of 59.00% upon filling. Dry rice husks showed high adsorption capacity for ammonia gas but low adsorption capacity for hydrogen sulfide. The bio-filter odor removal column filled with rice husk pellets showed more than 99.50% removal efficiency for NH3 and H2S gas. Through the analysis of circulation water, the prime removal mechanism is assumed to be the dissolution by water, microbial nitrification, and sulfation. Finally, it was confirmed that the microorganisms could survive well on the rice husk pellets, which provided them a stable supply of nutrients for their activity in this long-term experiment. This adequate supply of nutrients from the rice husk enabled high removal efficiency by the microorganisms.

The adsorption efficiency of ceramic filter media prepared with the steel-making slag for the removal of VOCs (휘발성 유기화합물 제거를 위한 제강슬래그로 제조된 세라믹 여재의 흡착효율)

  • Sin, Jun-Ho;Kim, Tae-Heui;Park, Kyung-Bong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.153-157
    • /
    • 2010
  • We studied the adsorption efficiency of steelmaking slag in removing volatile organic compounds (VOCs) for increasing the recycling rate of steel-making slag. Ceramic filter was prepared by mixing the steel-making slag and the diatomite which is used as adsorbents due to the advantage of the high specific surface area and regular mesopores. The adsorption efficiency for VOCs removal was about 80%, 96% and 85% in acetaldehyde, formaldehyde and ammonia, respectively. The adsorption efficiency over 80% for all The gases showed the practical possibility as the adsorption filter.

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter (생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성)

  • Yoon, Jong Moon;Kim, Dong Jin;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-I. Comparison of Activated Sludge Process (BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 I. 활성슬러지 공정과의 비교)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • To treat piggery wastewaters containing refractory compounds including nitrogen, biological treatments were investigated. In biological treatment, the removal efficiencies of organics and nitrogen by the activated sludge process and bioreactor using a BACC (Biological Activated Carbon Cartridge) media filled with granular activated carbon were examined. The results were as follows; in the biological process, when the approximate influent BOD concentration of 620 mg/L, through dilution, was treated by the activated sludge process, the process should be operated at a HRT of over 8 days to maintain an effluent BOD concentration of lower than 100 mg/L. In the treatment of piggery wastewater using a BACC bioreactor, when the HRT was 200 hours, the BOD, COD(sub)cr, and TKN removal efficiency of the effluent were 94, 75 and 64.3%, respectively. Comparing the BACC bioreactor with the activated sludge process, when the volumetric loading rate was 0.3 g BOD/L.day, the specific substrate removal rate of BOD was 0.14 g BOD removed/L.day in the activated sludge process which compared with 0.27 g BOD removed/L$.$day in the BACC bioreactor. The BACC bioreactor showed on average a 2-fold higher removal rate and was superior to the activated sludge process in wastewater treatment in terms of variations of loading time and high loading time. Therefore, the BACC process can effectively treat piggery wastewater containing high concentrations of nitrogen and organic compounds.

  • PDF