Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter

생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성

  • Yoon, Jong Moon (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Kim, Dong Jin (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 윤종문 (울산대학교 생명화학공학부) ;
  • 김동진 (한림대학교 환경생명공학과) ;
  • 유익근 (울산대학교 생명화학공학부)
  • Received : 2005.10.19
  • Accepted : 2006.03.07
  • Published : 2006.04.30

Abstract

In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

세라믹 담체가 충진된(공극률 32%) 생물여과 반응기(BAF)를 이용하여 암모니아성 질소폐수를 처리할 때, 수리학적 체류시간(HRT) 및 폭기량의 변화가 아질산 축적에 미치는 영향에 대해서 고찰하였다. 암모니아성 합성 폐수 및 석유화학 실폐수를 $1.6kgNH_4^+-N/m^3{\cdot}d$ 내외의 질소 부하로 BAF에 공급하였을 때, 암모니아성 질소의 제거율은 폭기량 증가에 비례하였으나 아질산 축적률은 폭기량 외에도 HRT의 영향을 받았다. 0.23시간의 HRT에서(공탑 체류시간 기준 0.7시간)는 0.23, 0.45, 0.56 cm/s로 공기 선속도를 증가시키면, 암모니아성 질소 제거율은 각각 73, 90, 92%로 증가하였으나 아질산 축적비($NO_2-N/NO_x-N$)는 0.92, 0.82, 0.48로 점차 감소하였다. 반면에 HRT 0.9시간, 공기 선속도 0.34~0.45 cm/s 범위에서는 암모니아성 질소 제거율 89%, 아질산 축적비 0.13 내외로 아질산 축적률이 급격하게 감소하였다. 공기 선속도 0.34 cm/s, HRT 1.4시간에서는 암모니아성 질소 제거율의 감소로 free ammonia(FA, $NH_3-N$) 농도가 상승하였고, 이후 약 50일에 걸쳐 아질산 축적비는 0.95 이상까지 점차 증가하였다. 본 연구에서는 HRT 0.23시간에서의 FA 농도 및 폭기 조건이 HRT 0.9시간 조건에 비해 아질산 축적에 더 불리했음에도 HRT 0.23시간에서의 아질산 축적률이 더 높게 나타났다. 따라서 FA 농도, 폭기 조건 외에도 HRT, 질소 부하 조건에 따라 BAF에서 아질산 축적량이 영향을 받았다. 반면에 FA 농도가 매우 높게(FA 5~15 mgN/L) 유지되는 조건에서는 운전 조건에 상관없이 아질산 축적이 안정하게 일어났으며 이 경우는 암모니아성 질소 제거율이 감소하였다.

Keywords

Acknowledgement

Supported by : 울산대학교

References

  1. Wiesmann, U., in A. Fiechter(Ed.), Biological Nitrogen Removal from Wastewater: Advances in Biochemical Engineering and Biotechnology., 51, Berlin:Springer-Verlag, 113-154(1994)
  2. Lee, S. C. and Kim, D. J., 'A Study on the Nitrification and Denitrification of an Anoxic-Oxic Upflow Biological Aerated Filter,' HWAHAK KONGHAK, 39(1), 123-129(2001)
  3. Abelling, U. and Seyfried, C. F., 'Anaerobic-aerobic Treatment of High Strength Ammonium Wastewater-Nitrogen Removal using Nitrite,' Water Sci. Technol., 26(5), 1007-1015(1992) https://doi.org/10.2166/wst.1992.0542
  4. Wett, B. and Rauch, W., 'The Role of Inorganic Carbon Limitation in Biological Nitrogen Removal of Extremely Ammonia Concentrated Wastewater,' Water Res., 37(5), 1100-1110(2003) https://doi.org/10.1016/S0043-1354(02)00440-2
  5. Ghyoot, W., Vandaele, S. and Verstraete, W., 'Nitrogen Removal from Sludge Reject Water with a Membrane-assisted Bioreactor,' Water Res., 33(1), 23-32(1999) https://doi.org/10.1016/S0043-1354(98)00190-0
  6. Garrido, J. M., van Benthum, W. A. J., van Loosdrecht, M. C. M. and Heijnen, J. J., 'Influence of Dissolved Oxygen Concentration on Nitrite Accumulation in a Biofilm Airlift Suspension Reactor,' Biotechnol. Bioeng., 53(2), 168-178(1997) https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
  7. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S. and Srinath, E. G., 'Inhibition of Nitrification by Ammonia and Nitrous acid,' J. Water Pollut. Control Fed., 48(5), 835-852(1976)
  8. Kim, D. J., Chang, J. S., Lee, D. I., Han, D. W., Yoo, I. K. and Cha, G. C., 'Nitrification of High Strength Ammonia Wastewater and Nitrite Accumulation Characteristics,' Water Sci. Techol, 47(11), 45-51(2003)
  9. Turk, O. and Mavinic, D. S., 'Maintaining Nitrite Build-up in a System Acclimated to Free Ammonia,' Water Res., 23(11), 1383-1388 (1989) https://doi.org/10.1016/0043-1354(89)90077-8
  10. Kuai, L. and Verstraete, W., 'Ammonium Removal by the Oxygen-limited Autotrophic Nitrification-denitrification System,' Appl. Environ. Microbiol., 64(11), 4500-4506(1998)
  11. Yoo, I. K., Kim, G. H. and Kim, D. J., 'A Study on Paper Industry Wastewater Treatment by Pilot-scale Biological Aerated Filter and Optimum Backwash Condition,' HWAHAK KONGHAK, 36(6), 945-950(1998)
  12. Pujol, R., Hamon, M., Kandel, X. and Lemmel, H., 'Biofilters: Flexible Reliable Biological Reactors,' Water Sci. Tech., 29(10-11), 33-38(1994)
  13. Mann, A., Mendoza-Espinisa, L. and Stephenson, T., 'A Comparison of Floating and Sunken Media Biological Aerated Filters for Nitrification,' J. Chem. Technol. Biotechnol., 72(3), 273-279(1998) https://doi.org/10.1002/(SICI)1097-4660(199807)72:3<273::AID-JCTB902>3.0.CO;2-L
  14. Villaverde, S., Garcia-Encina, P. A. and FDZ-Polanco, F., 'Influence of pH over Nitrifying Biofilm Activity in Submerged Biofilters,' Water Res., 31(5), 1180-1186(1997) https://doi.org/10.1016/S0043-1354(96)00376-4
  15. Cecen, F. and Gonenc, I., 'Nitrogen Removal Characteristics of Nitrification and Denitrification Filters,' Water Sci. Tech., 29(10), 409-416(1994)
  16. Joo, S. H., Kim, D. J., Yoo, I. K., Park, K. and Cha, G. C., 'Partial Nitrification in an Upflow Biological Aerated Filter by $O_2$ Limitation,' Biotechnol. Lett., 22(11), 937-940(2000) https://doi.org/10.1023/A:1005646632504
  17. APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA, Washington, D.C(1996)
  18. Hellinga, C. A., Schellen, A. J. C., Mulder, J. W., van Loosdrecht, M. C. M. and Heijnen, J. J., 'The Sharon Process: An Innovative Method for Nitrogen Removal from Ammonium-rich Wastewater,' Water Sci. Technol., 37(9), 135-142(1998) https://doi.org/10.1016/S0273-1223(98)00281-9
  19. Randall, C. W. and Buth, D., 'Nitrite build-up in Activated Sludge Resulting from Combined Temperature and Toxicity Effects,' J. Water Pollut. Control Fed., 56(9), 1045-1049(1984)