• Title/Summary/Keyword: American Concrete Institute

Search Result 65, Processing Time 0.024 seconds

Optimal design for the reinforced concrete circular isolated footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Velazquez-Santillan, Francisco
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.273-294
    • /
    • 2019
  • In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

Limitations on the Width-to-Thickness Ratio of Rectangular Concrete-Filled Tubular (CFT) Columns (콘크리트 충전 각형강관 기둥의 폭두께비 제한에 관한 연구)

  • Choi, Young-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.451-458
    • /
    • 2012
  • The concrete-filled steel tube (CFT) that has an excellent performance can be more economically used when the steel tube has a large width-to-thickness ratio. However, the international provisions such as American Institute of Steel Construction (AISC) limit the use of a slender plate in CFT members, resulting in a less optimal use of CFT. This study verifies the post buckling strength of CFT columns through the experimental program for Hollow Steel Sections (HSS) and CFTs with a with-to-thickness ratio ranged 60 to 100. The study also proposes a relaxed limitations of with-to-thickness ratio compared to the one specified in the current standards.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Large Displacement Behaviors of Foam-Insulated Concrete Sandwich Panels Subjected to Uniform Pressure (등분포하중에 종속된 폼내장 콘크리트 샌드위치패널의 유한변위거동)

  • Kang, Jun-Suk;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • This study examined the structural behaviors of foam insulated concrete sandwich panels subjected to uniform pressure. Finite element models were used to simulate the detailed shear resistance of connectors and the nonlinear behaviors of concrete, foam and rebar components. The models were then validated using data from static tests performed at the University of Missouri. Both composite and non-composite action had a significant effect on the response of the foam insulated concrete sandwich panels, indicating that the simulated shear tie resistance should indeed be incorporated in numerical analyses. The modeling approach used here conveniently simulated the structural behaviors during all loading stages (elastic, yielding, ultimate and post-failure) and was compatible with the American Concrete Institute (ACI) Code and existing design practices. The results of this study will therefore provide useful guidelines for the analysis and design of foam insulated sandwich panels under both static and dynamic loadings.

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

Estimation of Pile Shaft Resistances with Elastic Modulus Depending on Strain (변형률에 따른 탄성계수 변화를 고려한 말뚝의 주면지지력 산정)

  • Kim, Seok-Jung;Kim, Sung-Heon;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.933-943
    • /
    • 2009
  • Axial loads and shaft resistances can be calculated by load transfer analysis using strain data with load level. In load transfer analysis, the elastic modulus of concrete is a one of the most important parameters to consider. The elastic modulus, $E_{50}$, suggested by ACI (American Concrete Institute), has been commonly used. However, elastic modulus of concrete shows nonlinear stress-strain characteristic, so nonlinearity should be considered in load transfer analysis. In this paper, a load transfer analysis was performed by using data obtained from bi-directional pile load tests for four cases of drilled shafts. For consideration of nonlinearity, elastic modulus was calculated by both the Fellenius method and the nonlinear method, assuming the stress-strain relation of concrete to be a quadratic function, and then, the calculated elastic modulus was applied to the estimation of shaft resistance. The calculated shaft resistances were compared with the result obtained using the constant elastic modulus of ACI code. It was found that the f-w curves are similar to each method, and elastic modulus and shaft resistances decreased as strain increased. Moreover, shaft resistances estimated from elastic modulus considering nonlinearity were 5~15% different than those obtained using the constant elastic modulus.

  • PDF

Evaluation of Minimum Extensibility Standard Requirements for Steel Reinforcement (철근 최소 연신율 규격에 대한 평가)

  • Lee, Jae-Hoon;Kim, Dong-Hyun;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.559-567
    • /
    • 2011
  • Recently, many researches on high strength reinforcing steel have been conducted to construct optimum reinforced concrete structures. However, the studies have shown that high strength steel shows less elongation capacity than normal strength steel. Therefore, high strength reinforcing steel may not satisfy the minimum elongation requirement of current standards. Moreover, elongation measurements may be not standardized ones since each standard has its own requirements for minimum elongation and gage length. Therefore, the standards for reinforcing steel testing must be investigated to verify the validity of Korean Standard D 3504. This research aimed to compare the requirements for minimum elongation and gage length of the Korean, American, Japanese, European, and ISO Standards. Then, the study further investigated accuracy of the standards by tensile test of reinforcing steel. The study results showed that the Korean Standard has the strictest requirement. Based on the study results, the authors proposed modified minimum elongation requirements for general reinforcing steel and new requirements for seismic reinforcing steel.

The Physical Properties of Polymer Concrete for Ultra Thin Bridge Deck Pavement (초박층 교면포장용 폴리머 콘크리트의 물리적 특성)

  • Kim, Hyeon Jun;Son, Yeong Hyo;Han, Bum Jin;Jung, Ji Eun;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • This research was performed to identify physical properties of polysulfide epoxy polymer concrete for ultra-thin bridge deck pavement, and improve domestic applicability. With the optimum mix ratio determined from mixing experiments of polymer concretes, compressive, flexural, and bond strength were tested to identify its strength properties along with the freezing-thawing resistance test to evaluate its durability in harsh environments. As a result, the tested polymer concretes showed excellent performance in strength and deflection characteristic and all tested strength satisfied the criteria of American Concrete Institute. Moreover, it had better performance under variable temperatures comparing to other existing pavement materials. By the results of freezing-thawing resistance test and strength measurement for specimens underwent the freezing-thawing process, it can be judged that there is no such problem to the concrete's durability. In conclusion, the newly developed polymer concrete in this research has appropriate properties for use in ultra-thin pavement on bridge deck, and moreover it has superior applicability in comparison with former materials due to its improved temperature sensitivity.