DOI QR코드

DOI QR Code

Large Displacement Behaviors of Foam-Insulated Concrete Sandwich Panels Subjected to Uniform Pressure

등분포하중에 종속된 폼내장 콘크리트 샌드위치패널의 유한변위거동

  • Received : 2011.11.20
  • Accepted : 2011.12.07
  • Published : 2011.12.31

Abstract

This study examined the structural behaviors of foam insulated concrete sandwich panels subjected to uniform pressure. Finite element models were used to simulate the detailed shear resistance of connectors and the nonlinear behaviors of concrete, foam and rebar components. The models were then validated using data from static tests performed at the University of Missouri. Both composite and non-composite action had a significant effect on the response of the foam insulated concrete sandwich panels, indicating that the simulated shear tie resistance should indeed be incorporated in numerical analyses. The modeling approach used here conveniently simulated the structural behaviors during all loading stages (elastic, yielding, ultimate and post-failure) and was compatible with the American Concrete Institute (ACI) Code and existing design practices. The results of this study will therefore provide useful guidelines for the analysis and design of foam insulated sandwich panels under both static and dynamic loadings.

본 연구는 등분포 하중에 종속된 폼내장 콘크리트 샌드위치 패널 (foam insulated concrete sandwich panel)의 구조거동특성을 파악하였다. 유한요소모델이 콘크리트, 폼 그리고 철근의 비선형거동과 연결부재 (connector)의 상세 전단저항거동을 모사하기위해 사용되었다. 개발된 모델은 미주리대학 (University of Missouri)에서 수행된 정적실험자료를 사용하여 검증되었다. 합성 및 비합성 거동이 샌드위치패널의 구조거동에 미치는 영향을 정확히 모사하기 위해 전단연결재의 저항력을 모델에 정확히 반영하는 것이 중요하다. 본 연구에서 개발된 모델은 구조물의 극한강도 및 좌굴이후의 거동까지 모사하였고 미국콘크리트 학회 (ACI)의 설계예제와 비교하였다. 본연구의 결과는 정적 및 동적하중에 종속된 폼내장 콘크리트 샌드위치 패널의 해석및 설계에 유용한 정보를 제공할 것이다.

Keywords

References

  1. American Concrete Institute (ACI)(2008). Building code requirements for structural concrete and commentary. ACI 318, Farmington Hills, Mich..
  2. Einea A, Salmon DC, Tadros MK, Culp TD(1994). A new structurally and thermally efficient precast sandwich panel system. PCI J.; 39(4): 90-101.
  3. Naito CJ, Dinan RJ, Fisher JW, Hoemann JM. (2008) Precast/prestressed concrete experiments-series 1 (volume 1). Interim Report. AFRL-RX-TY-TR-2008-4616. Air Force Research Laboratory.
  4. Naito CJ.(2007) Analytical assessment of the blast resistance of precast, prestressed concrete components. Interim report. AFRL-ML-TY-TP-2007-4529. Air Force Research Laboratory.
  5. Naito CJ, Hoemann JM, Bewick BT, Hammons MI. (2009) Evaluation of shear tie connectors for use in insulated concrete sandwich panels. Interim report. AFRL-Rx-TY-TR-2009-4600. Air Force Research Laboratory..
  6. Nilson AH, Darwin D, Dolan CW.(2004) Design of concrete structures. 13thEd. Boston: McGraw-Hill.
  7. Precast/Prestressed Concrete Institute (PCI) (1997) Committee Report. State-of-the-art of precast/ prestressed sandwich wall panels. PCI J.; 42(2): 92-134.
  8. Pantelides CP, Surapaneni R, Reaveley LD. (2008) Structural performance of hybrid GFRP/steel concrete sandwich panels, ASCE; 12(5): 570-6.
  9. Salmon DC, Einea A, Tadros MK, Culp TD(1997). Full scale testing of precast concrete sandwich panels. ACI Struct. J.; 94(3): 354-62.
  10. SIMULIA(2007) ABAQUS Analysis User's Manual Version 6.7.

Cited by

  1. A Study on the Stiffnesses of the Advanced Composite Laminated Plates vol.6, pp.3, 2015, https://doi.org/10.11004/kosacs.2015.6.3.001
  2. Flexural Behavior of iFLASH System with No Blast Metal Cleaned Steel Plates vol.6, pp.4, 2015, https://doi.org/10.11004/kosacs.2015.6.4.030