Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.5.533

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending  

Abu-Shamah, Awni (Independent researcher)
Allouzi, Rabab (Department of Civil Engineering, The University of Jordan)
Publication Information
Steel and Composite Structures / v.37, no.5, 2020 , pp. 533-549 More about this Journal
Abstract
Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.
Keywords
slender composite columns; concrete-filled steel tubes; double-skin; CFDST; eccentric loading; buckling; non-linear finite elements; biaxial;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Abu-Shamah, A. (2019), "Finite element modeling of concrete-filled double skin steel tubular columns under eccentric axial compression", Master's thesis, University of Jordan, Amman, Jordan, June.
2 ACI (2008), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills , USA.
3 ACI (2002), Building code requirements for Reinforced Concrete, American Concrete Institute; Farmington Hills, USA
4 AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, USA.
5 An, L.H. and Fehling, E. (2016a), "Finite element analysis of circular steel tube confined UHPC stub columns", Proceedings of the 1st International Conference on UHPC Materials and Structures, Changsha, China, October.
6 An, L.H., Fehling, E. and Ismail, M. (2016b), "Numerical modelling of circular concrete filled steel tube stub columns", Proceedings of the 4th International Symposium on Ultra-High Performance Concrete and High-Performance Material, Kassel, German, March.
7 An, L.H. and Fehling, E. (2017a), "Numerical analysis of circular steel tube confined UHPC stub columns", Comput. Concrete, 19(3), 263-273. https://doi.org/10.12989/cac.2017.19.3.263.   DOI
8 An, L.H. and Fehling, E. (2017b), "Numerical study of circular steel tube confined concrete (STCC) stub columns", J. Constr. Steel Res., 136, 238-255. 10.1016/j.jcsr.2017.05.020.   DOI
9 An, L.H., Fehling, E., Thai, D.K. and Nguyen, C.V. (2019a), "Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns", Steel Compos. Struct., 29 (1), 125-138 https://doi.org/10.12989/scs.2018.29.1.125.   DOI
10 An, L.H., Nguyen, C.V. and Thai, D.K. (2019b), "Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC", Struct. Eng. Mech., 70 (1), 13-31. https://doi.org/10.12989/sem.2019.70.1.013.   DOI
11 Chen, J., Ni, Y.-Y and Jin, W.-L (2015), "Column tests of dodecagonal section double skin concrete-filled steel tubes", Thin-Wall. Struct., 88(12), 28-40. https://doi.org/10.1016/j.tws.2014.11.013.   DOI
12 Essopjee, Y. and Dundu, M. (2015), "Performance of Concrete-Filled Double-Skin Circular Tubes in Compression", Compos. Struct., 133, 1276-1283. https://doi.org/10.1016/j.compstruct.2015.08.033.   DOI
13 Eurocode (2004), Design of composite steel and concrete structures. Part 1.1: General rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
14 Eurocode (2005), Design of steel structures. Part 1.1: General rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
15 Ho, J.C.M. and Dong, C.X. (2014), "Improving strength, stiffness and ductility of CFDST columns by external confinement", Thin-Wall. Struct., 75, 18-29. https://doi.org/10.1016/j.tws.2013.10.009.   DOI
16 Haas, T.N. and Koen, A. (2014) "Eccentric Loading of CFDST Columns", Environ. Struct. Constr. Architect. Eng., 8(12), 1262-1266. https://scholar.sun.ac.za/handle/10019.1/96590.
17 Hassanein, M.F. and Kharoob, O.F. (2014), "Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes", Thin-Wall. Struct., 79, 23-37. https://doi.org/10.1016/j.tws.2014.01.008.   DOI
18 Hassanein, M.F., Elchalakani, M. and Patel, V.I. (2017), "Overall buckling behaviour of circular concrete-filled dual steel tubular columns with stainless steel external tubes", Thin-Wall. Struct., 115, 336-348. https://doi.org/10.1016/j.tws.2017.01.035.   DOI
19 Hassanein, M.F., Elchalakani, M., Karrech, A., Patel, V.I. and Daher, E. (2018), "Finite element modelling of concrete-filled double-skin short compression members with CHS outer and SHS inner tubes", Mar. Struct., 61, 85-99. https://doi.org/10.1016/j.marstruc.2018.05.002.   DOI
20 Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.   DOI
21 Hognestad, E. (1951), "Study of combined bending and axial load in reinforced concrete members", Research Report No. 399; College of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
22 Hu, H.T. and Su, F.C. (2011), "Nonlinear analysis of short concrete-filled double-skin tube columns subjected to axial compressive forces", Mar. Struct., 24(4), 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001.   DOI
23 Liang, Q.Q. (2007), "Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns", J. Constr. Steel Res., 63(3), 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004.   DOI
24 Hu, H. and Schnobrich, W.C. (1989), "Constitutive Modeling of Concrete by Using Nonassociated Plasticity", J. Mater. Civil Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199).   DOI
25 Ibanez, C., Romero, M. L., Espinos, A., Portoles, J.M. and Albero, V. (2017), "Ultra-high strength concrete on eccentrically Loaded slender circular concrete-filled dual steel columns", Structures, 12, 64-74. https://doi.org/10.1016/j.istruc.2017.07.005   DOI
26 Imani, R., Mosqueda, G. and Bruneau, M. (2015), "Finite element simulation of concrete-filled double-skin tube columns subjected to postearthquake fires", J. Struct. Eng., 141(12). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001301.   DOI
27 Lee, J. and Fenves, G.L. (1998), "Plastic-Damage Model for Cyclic Loading of Concrete Structures", J. Eng. Mech., 124(8), 892-900. 10.1061/(asce)0733-9399(1998)124:8(892).   DOI
28 Lee, S.J. (2007), "Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads", Steel Compos. Struct., 7(2),135-160. https://doi.org/10.12989/scs.2007.7.2.135.   DOI
29 Liang, Q.Q. (2009), "Performance-based analysis of concrete-filled steel tubular beam-columns", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007   DOI
30 Liang, Q.Q. (2017), "Non-linear analysis of circular double-skin concrete-filled steel tubular columns under axial compression", Eng. Struct., 131, 639-650. https://doi.org/10.1016/j.engstruct.2016.10.019.   DOI
31 Knowles, R.B. and Park, B. (1969), "Strength of concrete-filled steel tubular columns", J. Struct. Divison, 95(12), 2565-2588.   DOI
32 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.   DOI
33 Mander J.B., Priestley M.J.N. and Park R (1988), "Theoretical Stress-Strain Model for Confined Concrete", J. Struct. Eng. -ASCE, 114(8), 1804-1826. https://doi.org/10.1016/j.jcsr.2008.03.007.   DOI
34 Mirmiran, A. and Shahawy, M. (1997), "Behavior of Concrete Columns Confined by Fiber Composites", J. Struct. Eng., 123(5), 583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583).   DOI
35 SANS 10162-1 (2011), The structural use of steel, South African National Standards, South African Institute of Steel Construction; Johannesburg, South Africa.
36 Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub column", Eng. Struct., 72, 102-112. https://doi.org/10.1016/j.engstruct.2014.04.039.   DOI
37 Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), "A Study of the Failure of Concrete under Combined Compressive Stresses", Bulletin 185, University of Illinois Engineering Experimental Station, Illinois, USA.
38 Saenz, L.P. (1964), "Discussion of 'Equation for the stress-strain curve of concrete' by P. Desayi and S. Krishnan", J. Am. Concrete Inst., 61, 1229-1235.
39 Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131 https://doi.org/10.1016/j.jcsr.2013.07.001.   DOI
40 Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60(8), 1129-1158. 10.1016/j.jcsr.2003.11.008.   DOI
41 Young, B. and Ellobody, E. (2006), "Experimental investigation of concrete-filled cold formed high-strength stainless steel tube columns", J. Constr. Steel Res., 62(5), 484-492. https://doi.org/10.1016/j.jcsr.2005.08.004.   DOI
42 Zhang, G., Liu, B., Bai, G. and Liu, J. (2009), "Experimental study on seismic behavior of high strength reinforced concrete frame columns with high axial compression ratios", Struct. Eng. Mech., 33(5),653-656. https://doi.org/10.12989/sem.2009.33.5.653.   DOI
43 Zhao, X.L., Han, L.H. and Lu, H. (2010), Concrete-filled Tubular Members and Connections, CRC Press, Cleveland, Ohio, United States.
44 ABAQUS (2014), ABAQUS Analysis User's Guide 6.14, Dassault Systems Simulia Crop., Providence, RI, USA. http://abaqus.software.polimi.it/v6.14/books/usb/default.htm?statat=pt01ch01s01abo01.html#usb-int