• Title/Summary/Keyword: Alzheimer's Disease Classification

Search Result 45, Processing Time 0.024 seconds

Classification of Alzheimer's Disease with Stacked Convolutional Autoencoder

  • Baydargil, Husnu Baris;Park, Jang Sik;Kang, Do Young
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.216-226
    • /
    • 2020
  • In this paper, a stacked convolutional autoencoder model is proposed in order to classify Alzheimer's disease with high accuracy in PET/CT images. The proposed model makes use of the latent space representation - which is also called the bottleneck, of the encoder-decoder architecture: The input image is sent through the pipeline and the encoder part, using stacked convolutional filters, extracts the most useful information. This information is in the bottleneck, which then uses Softmax classification operation to classify between Alzheimer's disease, Mild Cognitive Impairment, and Normal Control. Using the data from Dong-A University, the model performs classification in detecting Alzheimer's disease up to 98.54% accuracy.

A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images

  • Baydargil, Husnu Baris;Park, Jangsik;Kang, Do-Young;Kang, Hyun;Cho, Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3583-3597
    • /
    • 2020
  • In this paper, a parallel deep learning model using a convolutional neural network and a dilated convolutional neural network is proposed to classify Alzheimer's disease with high accuracy in PET/CT images. The developed model consists of two pipelines, a conventional CNN pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and at the end of both pipelines, extracted features are concatenated and used for classifying Alzheimer's disease. Complimentary abilities of both networks provide better overall accuracy than single conventional CNNs in the dataset. Moreover, instead of performing binary classification, the proposed model performs three-class classification being Alzheimer's disease, mild cognitive impairment, and normal control. Using the data received from Dong-a University, the model performs classification detecting Alzheimer's disease with an accuracy of up to 95.51%.

Algorithm for Classifiation of Alzheimer's Dementia based on MRI Image (MRI 이미지 기반의 알츠하이머 치매분류 알고리즘)

  • Lee, Jae-kyung;Seo, Jin-beom;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.97-99
    • /
    • 2021
  • As the aging society continues in recent years, interest in dementia is increasing. Among them, Alzheimer's disease is a degenerative brain disease that accounts for the largest percentage of all dementia patients, with the medical community currently not offering clear prevention and treatment for Alzheimer's disease, and the importance of early treatment and early prevention is emphasized. In this paper, we intend to find the most efficient activation function by combining various activation functions centering on convolutional neural networks using MRI datasets of normal people and patients with Alzheimer's disease. In addition, it is intended to be used as a dementia classification modeling suitable for the medical field in the future through Alzheimer's dementia classification modeling.

  • PDF

Multi-biomarkers-Base Alzheimer's Disease Classification

  • Khatri, Uttam;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.233-242
    • /
    • 2021
  • Various anatomical MRI imaging biomarkers for Alzheimer's Disease (AD) identification have been recognized so far. Cortical and subcortical volume, hippocampal, amygdala volume, and genetics patterns have been utilized successfully to diagnose AD patients from healthy. These fundamental sMRI bio-measures have been utilized frequently and independently. The entire possibility of anatomical MRI imaging measures for AD diagnosis might thus still to analyze fully. Thus, in this paper, we merge different structural MRI imaging biomarkers to intensify diagnostic classification and analysis of Alzheimer's. For 54 clinically pronounce Alzheimer's patients, 58 cognitively healthy controls, and 99 Mild Cognitive Impairment (MCI); we calculated 1. Cortical and subcortical features, 2. The hippocampal subfield, amygdala nuclei volume using Freesurfer (6.0.0) and 3. Genetics (APoE ε4) biomarkers were obtained from the ADNI database. These three measures were first applied separately and then combined to predict the AD. After feature combination, we utilize the sequential feature selection [SFS (wrapper)] method to select the top-ranked features vectors and feed them into the Multi-Kernel SVM for classification. This diagnostic classification algorithm yields 94.33% of accuracy, 95.40% of sensitivity, 96.50% of specificity with 94.30% of AUC for AD/HC; for AD/MCI propose method obtained 85.58% of accuracy, 95.73% of sensitivity, and 87.30% of specificity along with 91.48% of AUC. Similarly, for HC/MCI, we obtained 89.77% of accuracy, 96.15% of sensitivity, and 87.35% of specificity with 92.55% of AUC. We also presented the performance comparison of the proposed method with KNN classifiers.

Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis (치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발)

  • Son, Joo Hyung;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

A Binary Classifier Using Fully Connected Neural Network for Alzheimer's Disease Classification

  • Prajapati, Rukesh;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.

An Analysis on Prescribing Patterns of Alzheimer's Dementia Treatment and Choline Alfoscerate using HIRA Claims Data (건강보험 청구자료를 이용한 알츠하이머 치매 치료제와 콜린알포세레이트의 처방 양상 분석)

  • Hwang, Sang Goo;Park, Hyekyung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Background: Alzheimer's dementia is the most common dementia. However, recently, choline alfoscerate is prescribed for treating Alzheimer's dementia, although it is not a treatment for this disease. Purpose: To analyze the prescription patterns of choline alfoscerate as a dementia treatment for patients with Alzheimer's disease and to analyze, as well as the factors affecting choline alfoscerate prescription. Method: The 2016 HIRA-NPS data was used in this study. The code of Alzheimer's dementia is F00 in the ICD-10 disease classification code. We analyzed the demographic, clinical, and regional characteristics associated with donepezil, rivastigmine, galantamine, memantine, and choline alfoscerate prescriptions. All statistical and data analyse were conducted by SAS 9.4 and Excel. Results: For patients with Alzheimer's disease, choline alfoscerate was the second most prescribed after donepezil. Analysis results showed that choline alfoscerate was more likely to be prescribed to men than to women, and more likely to be prescribed by local health centers than by medical institutions. Moreover, choline alfoscerate was highly likely to be prescribed at neurosurgical departments, among medical departments. Conclusions: This study confirmed that choline alfoscerate was prescribed considerably for patients with Alzheimer's dementia. Further studies valuating its clinical validity should be performed to clarify whether choline alfoscerate prescription is appropriate for treating Alzheimer's dementia.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification (PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Song, Jongkwan;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.