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Abstract 

 
In this paper, a parallel deep learning model using a convolutional neural network and a dilated 
convolutional neural network is proposed to classify Alzheimer’s disease with high accuracy 
in PET/CT images. The developed model consists of two pipelines, a conventional CNN 
pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and 
at the end of both pipelines, extracted features are concatenated and used for classifying 
Alzheimer’s disease. Complimentary abilities of both networks provide better overall 
accuracy than single conventional CNNs in the dataset. Moreover, instead of performing 
binary classification, the proposed model performs three-class classification being 
Alzheimer’s disease, mild cognitive impairment, and normal control. Using the data received 
from Dong-a University, the model performs classification detecting Alzheimer’s disease with 
an accuracy of up to 95.51%. 
 
 
Keywords: Computer vision, Deep learning, Convolutional neural networks, Parallel model, 
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1. Introduction 

Alzheimer’s disease (AD) is statistically the most common type of dementia generally seen 
in elderly people; it makes up about 70% of the cases in individuals who are 70 years of age or 
higher [1]. In most people, AD late-onset symptoms begin to appear in their mid-60s, while the 
early-onset occurs between 30s and mid-60s although the latter case is quite rare. It is also 
estimated that around 640 million people will be diagnosed by 2050 due to the increase in the 
aging population [2]. During the progress of the disorder, the brain structure 
progressively]changes; while the initial damage occurs in the hippocampus. Mild cognitive 
impairment (MCI) can be considered the early sign of AD, however not everyone with MCI 
may develop into the AD. As the disease progresses, hard plaques and tangles occur in the 
brain, causing debilitating issues such as progressive memory loss and at later stages, inability 
to move. AD also shrinks the hippocampus and cerebral cortex, while enlarging ventricles. 
Since the hippocampus is the part responsible for episodic and spatial memory and also works 
as a relay between the brain and the rest of the body, neurons cannot communicate through 
synapses. This causes issues with remembering, thinking, planning, and judgment. The effects 
of this progress can be seen as a low-intensity brain cell in medical imaging.  As of writing this 
paper, there is no definite cure for AD, and current treatments help only with prolonging life 
and alleviating symptoms.  

 
Fig. 1. Amyloid-positive (left) and amyloid-negative (right) images using PET scans are used in the 

diagnosis of Alzheimer’s disease. 

As the AD progresses, protein plaques in the brain named amyloid-β (Aβ) and 
hyperphosphorylated tau and lead to progressive neuron and axon damage. The changes 
generally follow affecting the early medial temporal lobe (entorhinal cortex and hippocampus), 
followed by progressive neocortical damage [3]. These changes start to appear years before 
AD becomes prevalent. It appears that the symptoms of AD start to develop due to the toxic 
effects of the plaques in the brain achieve a certain clinical threshold. For that reason, this 
paper’s work focuses on PET/CT (Positron Emission Tomography/Computed Tomography) 
images where the prevalence of these plaques is highlighted in patients. 
Since the early 1970s, researchers developed several computer-aided diagnostics systems that 
were based on manually subtracted feature vectors [4]. Afterward, these vectors were trained 
in a supervised manner to a machine learning model such as a support vector machine to 
perform classification. However, it was soon realized that there were serious limitations and 
shortcomings to such systems [5]. Recognizing these limitations, researchers turned towards 
data mining approaches in the 1980s and 1990s in hopes of developing more advanced and 
flexible systems.  
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Nowadays, the performance of deep learning models is being compared with human 
experts] in computer-assisted-diagnosis (CAD). Due to deep learning methodologies such as 
convolutional neural networks (CNN) were able to extract meaningful features from a given 
image automatically through supervised training and produce highly accurate results, the 
possibility of human experts being replaced with automated systems in near future is being 
discussed in the medical field due to the reduced cost and relatively similar performance [6]. 
Deep learning models show promising results for other medical image analysis tasks such as 
medical segmentation, disease, and tumor detection,  and classification, breast, bone, etc. 
using microscopy, and ultrasound images as well. 

In this paper, a parallel pipeline CNN model that uses both convolution operation and 
dilated convolution operation is proposed. The model extracts two distinct, but 
complementary image features that are spatially complementary to each other for each given 
brain image. One pipeline consists of conventional layers, whereas the other pipeline consists 
of dilated convolutional layers. The extracted features coming from two pipelines are 
concatenated to be used in the classification stage The proposed model is trained with the 
dataset that is obtained from Dong-A University Department of Nuclear Medicine, using 
PET/CT images.  

Paper is written in a format such that section 2 discusses related work on AD detection in 
brain imaging. Section 3 explains the proposed model. Section 4 shows the experimental 
results and considerations. Section 5 concludes the paper and discusses future work. 

2. Alzheimer’s Disease Detection with Computer Vision 
There has been a massive effort in the field of medical imaging to better observe the 

changes in the brain the AD causes through time. There have been machine learning 
applications proposed to classify different stages of AD using imaging data [7, 9]. Structural 
differences in the brain were identified through such research, to show the difference between 
a healthy brain and a brain that’s affected by AD. There is also a strong correlation between 
brain connectivity and the AD patient’s behavior [10]. The degeneration of the brain cells 
caused by AD can be seen using a variety of imaging techniques, such as PET/CT, structural 
and functional magnetic resonance imaging (sMRI, fMRI), diffusion tensor imaging (DTI), 
etc. These imaging techniques were used in AD diagnosis research such as PET [11], sMRI 
[12], fMRI [13]. It’s been also shown that the features combined from multiple modalities 
improve the accuracy. According to the results of one study, the accuracy of classification in 
the AD case has increased from 72% to 93.2% when a multi-modal is used instead of an 
individual modal [14].  

18F-florbetaben (FBB) PET imaging is useful in providing information about Aβ 
deposition of the brain of a patient with AD. Even though a variety of medical imaging 
techniques are widely used for AD research, clinical testing is still the default tool in AD 
diagnosis. However, regarding the prodromal AD and MCI, accurate diagnosis is challenging 
from the current existing clinical examination, which prompted including biomarkers such as 
Aβ and/or tau into AD diagnostics. The development of radiotracers to visualize Aβ plaques in 
the brain has become an active area of AD research. In this work, FBB brain PET imaging data 
was used to develop and validate the proposed model. 

PET/CT is a combination of the cross-sectional anatomic information obtained through CT 
and the metabolic information obtained through PET and CT, and the sequential images from 
both devices are combined into a single superposed image. This offers advantages over single 
CT or PET alone, such as its ability to accurately localize the increased FBB activity in 
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abnormal locations which may be impossible to localize with PET alone with the complement 
of lack of anatomical information and CT-based attenuation map. The work so far in the 
literature shows that PET images provide better classification accuracy [15] than MRI images 
[16, 17] alone.  

Deep learning models are used in so many areas such as object recognition, natural 
language processing, object tracking, segmentation, etc. due to their extraordinary feature 
extraction capabilities from input data automatically. Their hierarchical and deep structures 
allow them to learn high-level features, and further down the pipeline, more abstract features 
are obtained. These models are also capable of learning certain disease-caused features in the 
brain from images in their hidden or latent representations. Therefore, it didn’t take much time 
to apply and develop such models to the field of medical imaging for a more accurate 
diagnosis of disorders and diseases. Researchers used sparse autoencoder for multi-class 
classification using 2D CNN [18], and 3D CNN [19]. Brosh et. al. [20] developed a deep belief 
network (DBN) using manifold learning to detect AD. Suk et. al. [21 – 23] developed an 
autoencoder that incorporated SVM kernels using magnetic current imaging (MCI) for 
classification. Cárdenas-Peña et. al. [24] developed a model using kernel alignment and 
showed that supervised pre-training of stacked autoencoder provides higher classification 
accuracy than unsupervised pre-training with plain autoencoders and principal component 
analysis (PCA).  

Unfortunately, AD is only classified at its later stage, and earlier detection may only help 
slow the progression of cognitive decline, so it’s vital to be able to detect AD at its earlier 
stages. In this paper, a new proposed very deep parallel CNN which takes in three classes AD, 
MCI, and normal control (NC), and is capable of extracting different features of the same input 
data, concatenate these features and provide higher classification accuracy. The dataset used 
was provided with the collaborating Dong-a University Department of Nuclear Medicine. 

3. The Proposed Parallel Model for Classification 

3.1 Deep Learning Model 
The proposed model is a parallel deep CNN that is designed to extract different abstract 

color-based spatial information using convolutional and dilated convolutional layers, and 
concatenate these extracted abstract information to achieve higher accuracy. While one 
pipeline is a standard 8-layer-deep CNN with normal convolutions, the other pipeline is an 
8-layer-deep CNN with dilated convolutions [25]. Both parallel pipelines consist of operations 
such as Convolution or dilated convolution, Batch Normalization [26], Rectified Linear Units 
(ReLU) activation, max-pooling, and dropout [27]. 

Both first four layers of the network perform the first four operations respectively, while 
the eighth layer also performs dropout. After the computations are done, the features are 
flattened in the form of a dense layer similar to Huang et. al.’s work [28] and produce a dense 
block concatenating both of the layers from both pipelines. An example of respective 
operations can be seen in Fig. 2. 

 

 
Fig. 2. Standard operations performed by the model down both pipelines. 
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Regular convolution operation, while it’s very effective, generally struggle to integrate 
global context to its activations. If one considers a pure CNN with 𝑘 ×  𝑘 convolutions 
without pooling, then the receptive field of each unit is which affects the activation is 
𝑙 ×  (𝑘 − 1) + 𝑘  with l being the layer index. Therefore, it can be seen that the effective 
receptive field grows only linearly through the layers. This is limiting when it comes to higher 
resolution input images. Dilated convolution, however, works different in a way where 
between signal f and kernel k with dilation factor 𝑙 is defined as, 
 

 (𝑘∗𝑙𝑓)𝑡 = � 𝑘𝜏

∞

𝜏=−∞

∙ 𝑓𝑡−𝑙𝜏 (1) 

 
where 𝑓𝑡−𝑙𝜏 differs from normal convolution where it would be 𝑓𝑡−𝜏 . In the dilated convolution 
operation, the kernel comes into contact with the signal every 𝑙𝑡ℎ entry, which can also be 
extended for 2D convolutions. This makes dilated convolution operation computationally 
more efficient than convolution operation. In the proposed 4-layer-deep model, the 
conventional convolution pipeline has roughly 60 million trainable parameters, and the dilated 
convolution pipeline has around 27 million trainable parameters. This equals to around 25% 
more computationally lightweight pipeline for the dilated convolution pipeline compared with 
a pipeline that has the same perceptive field using 5 × 5 convolutional filters. 

 
 

Fig. 3. The architecture of the proposed model. The top pipeline is a regular CNN with eight layers with 
each specific layer operations highlighted in Fig. 2. The bottom pipeline is dilated CNN with eight 

identical layers except that in this pipeline, dilation operation is used. In both pipelines, fully-connected 
layers are obtained, concatenated together, and this layer is connected to the classification layer with 

softmax operation. 
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Both convolutional and dilated convolutional filters used in pipelines have a size of 3 × 3, 
while the dilated convolutional filter also has a dilation size of 2. As the weights and other 
parameters are constantly changed during training, sometimes the data is affected by being too 
big or too small, which is a phenomenon called the internal covariance shift. Batch 
normalization is used to decrease the training time and fixes this issue. Max-pooling with a 
2 ×  2  size is used for both pipelines. 

Due to its nature, dilated convolution increases the receptive view of the network 
exponentially depending on the dilation size. In this work, this fact is taken advantage of, as 
this makes the network lighter and captures different features than plain convolution operation 
of similar kernel size compared to 5 × 5 convolutional layer. 

The proposed model takes in the initial input with size 160 × 160 × 3, and after each 
max-pooling operation, the image size decreases by half while the depth doubles. This 
operation is done four times until there is a 1024-unit fully-connected layer for each pipeline. 
Concatenating these fully-connected layers gives us a new fully-connected layer with a unit 
size of 2048, with both pipelines’ extracted features into one. This layer is connected to the 
classification layer with softmax operation, where it’s defined as, 
 

 𝑝𝑖 =
exp(𝑓𝑖)
∑ exp(𝑓𝑖)𝑖

 , 𝑖 = 1, … ,𝑚  (2) 
 
where 𝑓𝑖 is the representation, 𝑝𝑖 is the probability score, and m is the number of classes, 
which in this case is 3 (AD, MCI, and NC). With this information, L is obtained such that, 
 

 L = −�𝑡𝑖 𝑙𝑜𝑔(𝑝𝑖)
𝑖

  (3) 

 
where L is the cross-entropy loss of the model. This value is used during the backpropagation, 
where gradients are calculated. Say, the PET/CT image data is called 𝑡𝑖, then, 
 

 
∂L
∂f𝑖

= 𝑝𝑖 − 𝑡𝑖 (4) 

 
Stochastic gradient descent with momentum optimization algorithm was used for the proposed 
model. The training data is also split with training and cross-validation in 8:2 proportions. 
Nesterov momentum was also used for speeding up the training and improve convergence. It 
works as, given the objective function 𝑓(𝛼) is to be minimized, Nesterov momentum is given 
as, 
 
 𝑣𝑡 = 𝜇𝑣𝑡−1 − 𝜀𝛻𝑓(𝛼𝑡−1 + 𝜇𝑣𝑡−1) (5) 

 
 𝛼𝑡 =  𝛼𝑡−1 + 𝑣𝑡 (6) 
 

where 𝑣𝑡 is the velocity, 𝜀 > 0 is the learning rate, µ ∈ [0, 1] is the momentum coefficient, 
and 𝛻𝑓(𝛼𝑡) is the gradient at  𝛼𝑡. 
Let x={𝑥𝑖, i=1,…,N} be a set of PET/CT images with 𝑥𝑖 ∈ [0,1,2, … , 𝐿 − 1](ℎ × 𝑤 × 𝑙), a 3D 
image with L grayscale values, h × w × l  voxels and y ∈ {0, 1, 2} the classes in the dataset 
(AD, MCI, and NC). Next, construct a classifier f,  
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 𝑓:𝑋 → 𝑌;  x → y (7) 
 

 
that predicts a label y according to an input x with a minimum error rate. We would like to 
determine this classifier 𝑓 through an optimal parameter set w ∈ ℝ𝑃(where P could easily be 
millions) through minimizing the error rate during the prediction. Therefore, training is an 
iterative process of finding the set of parameters 𝑤, while minimizing the classifier loss, 
 

 𝐿(𝑤,𝑋) =  
1
𝑛
�𝑙(𝑓(𝑥𝑖 ,𝑤), 𝑐̂𝑖)   
𝑛

𝑖=1

 (8) 

 
where 𝑥𝑖 is the ith image of 𝑋,𝑓(𝑥𝑖 ,𝑤) is the classifier function predicting the class 𝑐𝑖 of 𝑥𝑖  in 
a given 𝑤, 𝑐̂𝑖  the ground truth class for the specific image, and 𝑙(𝑐𝑖 , 𝑐�𝑖) is the loss function for 
the wrong prediction (𝑐̂𝑖 instead of 𝑐𝑖). Then we set L for the cross-entropy loss. 
 

 𝐿 = �𝑐̂𝑖
𝑖

 𝑙𝑜𝑔 𝑐𝑖  (9) 

3.2 Dataset  
 

In this paper, PET/CT images dataset is the property of Dong-a University Hospital 
Department of Nuclear Medicine. There are three separate classes, AD, MCI, and NC. The 
detailed information about the dataset is given in Table 1. 
In a given PET/CT scan of a person’s brain, there were 110 axial images. However, the top 30, 
and bottom 30 slices provided no useful information about plaque formations in the brain 
information about classification, so these images were discarded. Therefore, 50 images from 
each patient’s brain were used for training and testing. Each image size is 160 × 160 ×  3. 
 
Table 1. The dataset information with the total number of images and the total number of patients for 

each designated class. 

 
Fig. 4. Sample images from the dataset. Left image AD, middle one MCI, and the right image is the NC 
case. Image slices were taken from the same slice number of different patient's images (60th slice out of 

110). 

Classes Total Number of Images Total Number of Patients 
AD 7,050 141 
MCI 5,250 105 
NC 3,500 70 

Dataset 15,800 316 
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The human brain in real life is a 3-dimensional organ, however, the medical images only 
represent one plane, which is the axial plane. Other axes, namely sagittal and coronal axes also 
carry spatial information in their relevant planes about plaque formations in the brain, which 
can be used to train the model. Thus, in this work, the proposed model was also tested to see 
how it would perform with other axes of the brain, sagittal, and coronal. Using the bicubic 
interpolation method, sagittal and coronal axes were created. For these axes, initial 15 and the 
last 15 images were discarded for these images did not carry any useful information about. 
This means for one patient, out of 110 created images, 80 training images contain useful 
information about AD for both sagittal and coronal axes. The flowchart of the followed 
method can be seen in Fig. 5. The number of images obtained through this process is shown in 
Table 2. An example of created coronal and sagittal images can be seen in Fig. 6 and Fig. 7, 
respectively. 

For a specific set of data points (𝑥𝑘 ,𝑦𝑘),𝑘 = 0:𝑁  cubic spline consists of 𝑁  cubic 
polynomial 𝑠𝑘(𝑥), 𝑠 assigned to each subinterval classifying given constraints. The cubic 
spline is defined as a function 𝑆(𝑥) = 𝑠𝑗(𝑥) on an interval [𝑥𝑗, 𝑥𝑗+1] for 𝑛 = 0, 1, … ,𝑛 − 1 
defined as, 
 
 𝑆𝑗(𝑥) = 𝑎𝐽 + 𝑏𝐽�𝑥 − 𝑥𝐽�+ 𝑐𝐽(𝑥 − 𝑥𝐽)2 + 𝑑𝐽(𝑥 − 𝑥𝐽)3 (10) 

 
In deep learning, data augmentation is defined as enlarging the dataset through different 

means without affecting possible obtainable features and preventing overfitting [29]. Since 
adding more data in the medical imaging domain would prove costly, augmentation is the 
most reliable and easiest way to increase the image number in the dataset. Horizontal flip, 
width shift, height shift operations were used to increase the dataset size. Each image is 
randomly augmented through one or more of the mentioned methods to create a second image, 
doubling the total number of images in the dataset. The final number of total images after the 
data augmentation used in the training is given in Table 3. 20% of the data was used for testing 
and 10% of the data for validation. The augmentation process was applied separately for 
training, testing, and validation sets.  
 

 
Fig. 5. Flowchart of the method for creating sagittal and coronal axes using the axial images. 
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Fig. 6. An example of created coronal images with AD, MCI, and NC, respectively. The slices are taken 

from the same 𝑖𝑡ℎ image of a person. 

 

 
Fig. 7. An example of created sagittal images with AD, MCI, and NC, respectively. The slices are taken 

from the same 𝑖𝑡ℎ image of a person. 

Table 2. The total number of images that are used for training images after the bicubic interpolation 
process. 

Axes AD MCI NC TOTAL 
Axial 7,050 5,250 3,500 15,800 

Coronal 11,280 8,400 5,600 25,280 
Sagittal 11,280 8,400 5,600 25,280 

 
 

Table 3. The total number of images in the dataset after the data augmentation is applied. 

Axes AD MCI NC TOTAL 
Axial 14,100 10,500 7,000 31,600 

Coronal 22,560 16,800 11,200 50,560 
Sagittal 22,560 16,800 11,200 50,560 

 

4. Experimental Results and Considerations 

4.1 Experimental Environment and Training 
 

Implementation was done using Tensorflow [30], Keras [31], Python 2.7 in Ubuntu OS 
16.04 computer with Intel Xeon E5-2650 v3 CPU, NVIDIA Quadro M5000 dual-GPU, and 
64GB RAM. We used SGD with a mini-batch size of 30, a learning rate of 0.001, a weight 
decay of 0.06, and a momentum of 0.9 with Nesterov optimization. The model’s accuracy and 
loss graph change during the training of sagittal images can be seen in Fig. 8. 

Small fluctuations that are seen in Fig. 8 are due to the SGD optimization algorithm trying 
to reduce the loss value obtained after a forward-propagation pass, by updating the weights in 
a backward-propagation. It’s seen that after 120 epochs, the proposed model was sufficiently 
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trained with a validation accuracy close to 100%. It can also be seen that both validation and 
training loss dropped below the value of 0.002 after 120 epochs of training. It would be 
possible to reduce the loss value even further, however, this also increases the risk of 
overfitting over the dataset instead of generalizing. Overfitting means the model has 
memorized the dataset, and it would mean that it would perform less accurately over any other 
image that it has not been trained with. 

 

 
Fig. 8. The model’s accuracy and loss value change through the epochs during the training. It can be 

seen that 120 epochs were sufficient for optimized accuracy and loss value. 

 

4.2 Performance of the model 
 

The performance of the model during inference is of utmost importance, and activation 
maps give clues about what the model has learned. Activation maps in deep learning help 
understanding where the model’s attention is at, in given visualizing data. These fine-grained 
details in images are crucial in computer vision tasks as the model tries to interpret this 
extracted information in its task; in this work, classification. As given in Fig. 9, Fig. 10, and 
Fig. 11, the model’s pipeline attention maps can be seen. On each image, the left side is the 
convolutional pipeline activation map, and on the left side is the dilated convolutional pipeline 
map. It can be seen in the images that while the convolutional pipeline activations are more 
focused on narrower areas, dilated convolution pipeline activations are more focused on wider 
areas, such as the circumference of the brain. 

Complementary nature of the pipeline activations points to the fact that more thorough and 
accurate feature extraction is possible through the proposed model. In all three cases for AD, 
MCI, NC, convolutional pipeline, and the dilated pipeline extracted features that the other 
could not obtain. Throughout the pipelines, these features combined led the proposed model to 
achieve higher accuracy than other models. 
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Fig. 9. Activation maps of the model for a test image for the AD case. The left box is the convolutional 
pipeline, and the right box is the dilated convolution pipeline. It can be seen that the activated areas for 
the test image complement each other; meaning, the dilated pipeline can capture features not obtained 

by convolutional pipeline, and vice versa. 

 
Fig. 10. Activation maps of the model for a test image for the MCI case. 

 
Fig. 11. Activation maps of the model for a test image for the NC case. 

 

4.3 Results 
The proposed model was compared with other well-known state-of-the-art models such as 

VGG16 [32], GoogLeNet Inception v4 [33], ResNet50 [34], and a sparse autoencoder 
specifically developed for AD classification in [35]. The results show that the proposed model 
outperforms all the comparison models by a large margin. The results can be seen in Table 4. 
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The total number of trainable parameters and training time in benchmark models and the 
proposed model is given in Table 5. Even though the model has a high number of trainable 
parameters, it shows higher accuracy than the benchmark models. In model inference, the 
accuracy of the model is calculated as,  
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (113) 

 
The proposed model was able to extract more useful information from created sagittal 

images than the original axial images. This means that the spatial information carried in the 
sagittal plane is found to be more useful for the proposed model to perform classification more 
accurately. 
 
Table 4. Accuracy comparison between the developed model and other state-of-the-art classification 

models. 

Models Axial Coronal Sagittal Average 
GoogLeNet (InceptionV4) 83.72% 82.38% 83.77% 83.29% 
VGG16 91.33% 91.42% 92.24% 91.66% 
Sparse Autoencoder 93.37% 93.04% 93.54% 93.31% 
ResNet50 89.41% 90.33% 92.25% 90.66% 
Developed Model 94.72% 94.09% 95.51% 94.77% 

 
Table 5. Trainable parameter comparison between the proposed model and the benchmark models. The 

model has a large number of parameters. 

Model Trainable Parameters Training Time 
GoogLeNet (Inception v4) 6M 1h45m 
ResNet50 23M 3h32m 
Sparse Autoencoder 68M 6h58m 
VGG16 109M 8h13m 
Proposed Model 87M 7h33m 

5. Conclusion 
In this paper, a parallel deep learning CNN model is proposed that is both capable of 

performing accurately in a given dataset, and computationally more efficient than similar very 
deep models such as VGG16. Convolutional and dilated convolutional pipelines work 
complementary with each other in extracting features the other pipeline cannot, which 
provides higher accuracy. Although the majority of the works in the literature focus on binary 
classification, in this paper multi-class classification was focused on, for the future 
development of AD diagnosis. Sagittal and coronal plane images were also tested for relevant 
spatial information, which showed that the sagittal plane provided with the highest accuracy 
score with 91.51%. Even though the model has been tested for the AD diagnosis only, it’s 
believed that it can be used for other medical imaging areas, as well as modifications for 
further use given its simplistic yet robust approach to the extraction of image features. The 
focus of future work will be on increasing the accuracy as well as lowering the computational 
cost of the model. 
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