• Title/Summary/Keyword: Alveolar bone graft

Search Result 254, Processing Time 0.027 seconds

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.

Alveolar ridge preservation of an extraction socket using autogenous tooth bone graft material for implant site development: prospective case series

  • Kim, Young-Kyun;Yun, Pil-Young;Um, In-Woong;Lee, Hyo-Jung;Yi, Yang-Jin;Bae, Ji-Hyun;Lee, Junho
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.521-527
    • /
    • 2014
  • This case series evaluated the clinical efficacy of autogenous tooth bone graft material (AutoBT) in alveolar ridge preservation of an extraction socket. Thirteen patients who received extraction socket graft using AutoBT followed by delayed implant placements from Nov. 2008 to Aug. 2010 were evaluated. A total of fifteen implants were placed. The primary and secondary stability of the placed implants were an average of 58 ISQ and 77.9 ISQ, respectively. The average amount of crestal bone loss around the implant was 0.05 mm during an average of 22.5 months (from 12 to 34 months) of functional loading. Newly formed tissues were evident from the 3-month specimen. Within the limitations of this case, autogenous tooth bone graft material can be a favorable bone substitute for extraction socket graft due to its good bone remodeling and osteoconductivity.

Bacterial infections after implant surgery and alveolar bone graft (임플란트 및 골이식술과 관련된 세균감염)

  • Paeng, Jun-Young
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.298-306
    • /
    • 2015
  • Bacterial infection after implant installation or bone graft is a serious complication. Bone grafts represent a temporary foreign body lacking vascularisation and are therefore of increased susceptibility to infection, which may be introduced either intraoperatively or postoperatively. Bone graft-associated infections are due to biofilm formation on the surface of the bone graft and often require removal of the infected bone graft with substantial graft failure. In this review, the implant and graft related infection, the role of biofilm and the management will be discussed.

Familial tooth bone graft for ridge and sinus augmentation: a report of two cases

  • Kim, Young-Kyun;Kim, Su-Gwan;Lim, Sung-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Recently, clinical application of autogenous tooth bone-graft materials has been reported. Autogenous tooth bone graft has been used in implant surgery. Familial tooth bone graft is a more advanced procedure than autogenous teeth bone graft in that extracted teeth can be used for bone graft materials of implant and teeth donation between siblings is possible. We used autogenous tooth and familial tooth bone-graft materials for ridge augmentation and sinus bone graft and obtained satisfactory results. The cases are presented herein.

A COMPARATIVE STUDY OF EFFECTS OF THE BIOCERAMICS ON HEALING PROCESSES OF THE ALVEOLAR BONE DEFECTS IN DOGS (수종의 합성골이식재가 성견 치조골 결손의 치유에 미치는 영향에 관한 비교연구)

  • Park, Yang-Jae;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.422-441
    • /
    • 1993
  • The purpose of this study was to compare effects of the bioceramics on healing processes of the alveolar bone defects in dogs. Five adult dogs aged 1 to 2 years were used in this study. Experimental alveolar bone defects were created surgically with a #1/2 round bur at the furcation area of the buccal surface of the mandibular 3rd, 4th premolars and 1st molar. Fifteen experimental alveolar bone defects were devided into three groups according to the type of graft materials. The groups were as follows : 1) flap operation with dense hydroxyapatite( DHA group ) 2) flap operation with porous hydroxyapatite( PHA group ) 3) flap operation with natural coral ( NC group ) At 1, 2, 4, 6, and 12 weeks, dogs were serially sacrificed and specimens were prepared with Hematoxylin-Eosin stain and Mallory stain for light microscopic evaluation. The results of this study were as follows : 1. In every group, inflammatory cell infiltrations were seen at 1st weeks due to surgical trauma, however inflammatory response owing to graft materials were not seen. 2. In every group, the appearance of connective tissue around graft materials was loosely formed at the initial stages, however the connective tissue was densely formed at 2 weeks. 3. The presence of osteocytes were observed at 2 weeks in the natural coral group, however the osteocytes were appeared at 6weeks in the dense hydroxyapatite group. 4. A new bone was formed from the base and walls of the defect and gradually expanded toward the graft materials. 5. A resorption of the natural coral occurred irregularly at the periphery of the material, therefore the size and shape of the natural coral were reduced at 6 weeks. 6. At 12 weeks, the porous hydroxyapatite and natural coral were surrounded by newly formed bone most completely, however dense hydroxyapatite was surrounded by newly formed bone in part.

  • PDF

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

Comparative histomorphologic study of regenerated bone for dental implant placement in the atrophied posterior maxilla

  • Kim, Se-Jung;Kim, Soung-Min;Kim, Ji-Hyuck;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.28-39
    • /
    • 2007
  • The purpose of this study is to evaluate the regenerative capacity of reconstruction in the atrophied posterior maxilla by comparing bone graft procedures and alveolar distraction osteogenesis (ADO) techniques. We performed the autogenous iliac bone graft (AGB group, 5 specimens in 3 patients), and the combination (Mixed group, 3 specimens in 3 patients) of the autogenous and deproteinized bovine bone ($Bio-Oss^{(R)}$, Geistlich Co., Switzerland) as the ratio of 2:1 in the sinus floor elevation procedures. ADO procedures using $TRACK^{(R)}$ (KLS Martin Co., Germany) were also performed to augment vertical alveolar height in atrophied posterior maxilla (ADO group, 5 specimens in 4 patients). Newly generated bone tissues were obtained with the 2.0mm diameter trephine bur (3i Co., USA) during implant fixture installation after 5-7 months. Routine histolomorphological observation, immunodot blot assay for quantitative evaluation, and immunohistochemical staining with antibodies to MMP-1, -9, -10, TIMP-1, -2, and BMP-2, -4 were all carried out. Lamellar bone formation was well shown in all specimens and new bone formations of ADO group increased than those of other procedures. In immunohistochemical staining, the strong expression of BMP-2 was shown in all specimens, and immunodot blot assay showed that bone formation is accompanied by the good induction of factors associated with angiogenesis and appeared more increased amount of osteogenic and angiogenic factors in ADO group. ADO is the most effective technique for new bone formation compared to sinus floor elevation with autogenous or mixed bone graft in the atrophied posterior maxilla. In the quantitative immunodot blot assay, the regenerated bone after ADO showed more increased products of VEGF, BMP-2, PCNA and MMP-1 than those after the other procedures, and these findings were able to be confirmed by immunohistochemical stainings.

Implant placement in severely atrophic mandible using alveolar ridge splitting procedure and small block bone graft: A case report of 4-year follow-up (심하게 위축된 하악 구치부에 치조제 분할술과 블록형 골이식술을 이용한 임플란트 식립: 4년 관찰 증례보고)

  • Kim, Na-Hong;Bang, Joo-Hyuk;Lee, Dong-Woon
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.64-73
    • /
    • 2019
  • Various techniques have been developed, and the development of piezo electric devices have made it possible to widen the alveolar ridge even if the residual bone is dense or if there is a lack of cancellous bone between the cortical bones. In the operation of the mandibular posterior area, the flap is easily accessible to the ramus bone, from which high quality autogenous bone can be obtained, compared to other parts. A small autologous bone block can be used with particulated bone graft material using one screw for bone regeneration instead of a large autologous bone with two screws. The tapered implant design can minimize buccal bone fracture, even in severely atrophic mandibular areas. We report a case of 4 years following implant placement with ridge splitting and small autogenous bone graft in severly atrophic mandible. This report demonstrates a case of functional and aesthetic restoration in a patient through a collaboration.

RESONANCE FREQUENCY ANALYSIS IN NON-SUBMERGED, INTERNAL TYPE IMPLANT WITH SINUS AUGMENTATION USING DEPROTEINIZED BOVINE BONE MINERAL (이종골을 이용한 상악동 측벽거상술과 동시 식립한 임프란트에서 안정성에 대한 공진 주파수 분석)

  • Lee, Ju-Hyon;Min, Hyun-Gi;Lee, Jin-Sook;Kim, Myung-Rae;Kang, Na-Ra
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.554-560
    • /
    • 2008
  • In posterior maxilla, it is difficult to achieve primary stability of implants due to sinus pneumatization, alveolar bone loss, and low bone quality. The accurate and objective primary stability assessment is important for good prognosis of implants. Purpose: The aim of this study was to assess the primary stability of the non-submerged, internal type implants with maxillary sinus augmentation using deproteinized bovine bone mineral by a resonance frequency analyzer, when residual alveolar bone height is under 8mm Materials and methods: A total of 20 implants was placed into 5 grafted maxillary sinuses in 5 patients. Deproteinized bovine bone mineral (Bio-$Oss^{(R)}$) was used as graft material. SS II implants (diameter 4.1mm, and length 11.5mm, SLA suface)) were placed. All of the patients received maxillary sinus graft procedure by 1-step technique. Residual bone height was $1.3{\sim}7.8mm$ (mean 4.4mm) measured by panorama radiography. After implant placement, RFA was measured at 4,8,12,20 weeks. The results were divided into 2 groups; RFA value under 4mm and over 5mm of bone height. It was statistically analyzed. Results: 1. The primary stability of implants was increased with time 2. The RFA value was above 65 ISQ at 12 weeks 3. There was no correlation between RFA and residual alveolar bone height in maxillary sinus augmentation by 1-step technique. Conclusion: 1-step surgical procedure is a feasible option for patients with as little as 4mm residual alveolar bone height, when utilizing non-submerged, internal type implants with xenografts.

A Simple Surgical Guide for Horizontal Bone Graft: A Technical Note

  • Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.90-92
    • /
    • 2016
  • Horizontal bone defect in the anterior maxilla makes it difficult to place dental implant. The golden standard for bone augmentation is autogenous block bone graft. Tight contact with recipient site and rigid fixation are two key factors for successful block bone graft. Ramal bone graft has been the most reliable methods for dental implant field. However, the curvature of the alveolar ridge is different from ramal bone shape. Intraoperative trimming of ramal bone is cumbersome for surgeon. In this technical note, a simple way to design the ramal bone harvest using bone wax stent is reviewed.