• Title/Summary/Keyword: Aluminum vessels

Search Result 30, Processing Time 0.023 seconds

Improved Heat Lamp for Preventing Arterial Spasm after Microvascular Surgery (미세혈관 수술 후 혈관 연축의 예방을 위한 개선된 온열전등)

  • Ahn, Sung-Min;Hwang, So-Min;Hu, Eun-Suk;Park, Jung-Mi;Park, Kyung-A;Oh, Jin-A
    • Archives of Reconstructive Microsurgery
    • /
    • v.17 no.2
    • /
    • pp.120-125
    • /
    • 2008
  • Purpose: Heat therapy by heat lamp after microvascular surgery is being used for preventing blood vessels's contraction and blood-flow's disturbance. As usually, incandescent lamp has been used. But there have been several problems and need for improvement in the existing heat lamp treatment. So we would like to introduce improved heat lamp to keep an appropriate temperature and intensity of illumination. Methods: The existing heat lamps are the ones of general light stands covered with newspaper, having 60 watt light bulb of incandescence and lampshade made of aluminum. We have tried to improve shortcomings of the existing heat lamps by enlarging the size of aluminum lampshade and attaching a curtain that can block heat and light. We conducted a comparative study between the existing and improved heat lamps. Under the assumption that there are several affected parts, we have also measured the distance from heat lamp to patients' eye region and then intensity of illumination. Result: The target temperature of surface was realized in 11 minutes with the maximum temperature reaching at 36.6 degrees C in 28 minutes at the existing heat lamp while the target temperature reached in 7 minutes with the maximum temperature reaching at 39.0 degrees C in 17 minutes at the improved heat lamp. The existing and improved heat lamp showed 38 lx and 0.1 lx of intensity of lumination, respectively. Conclusion: Using improved heat lamps, we can keep an appropriate temperature and we think we can make contribution to patients' treatment by making them and their neighbors able to sleep with minimized disturbance thanks to low intensity of illumination secured by blocking light.

  • PDF

Design and Performance Characteristics of a Broadband Underwater Speaker System (광대역 수중 스피커 시스템의 설계 및 성능 특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.543-549
    • /
    • 2011
  • An underwater speaker was developed for use as an acoustic deterrent device that transmits acoustic energy through the water omnidirectionally over a broadband frequency range to eliminate marine mammal attacks and to prevent physical damage to the inshore and coastal fishing grounds of Korea. The underwater speaker was constructed of two vibration caps machined from 6061-T6 aluminum alloy and a stack of PZ 26 piezoelectric ceramic rings (Ferroperm Piezoceramics A/S) connected mechanically in series and electrically in parallel. The performance characteristics of the underwater speaker were measured and analyzed in an experimental water tank of $5\;m{\times}5\;m{\times}6\;m$. The peak transmitting voltage response (TVR) was measured at 11.16 kHz with 163.45 dB re $1\;{\mu}Pa$/V at 1m. The underwater speaker showed a near omnidirectional beam pattern at the peak TVR resonance frequency. The usable frequency range was 4-25 kHz with a lower TVR limit of approximately 140 dB. We conclude that this underwater speaker could be satisfactorily used as an acoustic deterrent device against marine mammals, particularly the bottlenose dolphin, to protect catches and fishing grounds as well as the mammals themselves, for example, by keeping them away from fishing gear and/or vessels.

Investigation of Optimum Cathodic Protection Potential to Prevent Erosion with a Flow Rate of AA5083-H321 for Marine Vessels (선박용 AA5083-H321의 유속에 의한 침식손상 방지를 위한 최적 음극방식전위 규명)

  • Chong, Sang-Ok;Park, Il-Cho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.288-295
    • /
    • 2020
  • This study investigated the erosion-corrosion characteristics of 5038-H321 aluminum alloy in a natural seawater solution through various electrochemical experiments and flow rate parameters. Cathodic polarization experiments were conducted at flow rates ranging from 4 to 12 knots. Considering the concentration polarization section representing a relatively low current density, the range of the potentiostatic experiment was determined to be -1.6 to -1.0 V. The potentiostatic experiment was conducted at various potentials for 180 minutes in seawater. After the experiment, the corrosion characteristics were evaluated by observing surface morphology and measuring surface roughness. As a result, as the applied potential was lower, the amount of calcareous deposits increased and the roughness tended to increase. On the other hand, it was confirmed that the roughness was larger in the static condition than the flow rate condition due to the influence of the flow velocity. Variations in the chemical composition with flow rate variations were analyzed by energy-dispersive spectroscopy (EDS). In conclusion, the cathodic potential of AA5083-H321 in seawater was determined to be -1.0 V.

Evaporating heat transfer characteristics of Aluminum-brass tube for seawater cooling system using R-134a (해수냉각시스템용 Aluminium Brass Tube의 R-134a 증발열전달 특성)

  • Kang, In-Ho;Seol, Sung-Hoon;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.197-201
    • /
    • 2017
  • Most fishing vessels use an ice cooling system to manage and store captured fish. However, it is difficult to maintain an adequate temperature and salt concentration as well as operating time limitations in ice cooling systems. The purpose of this study is to investigate the heat transfer characteristics of flooded-type evaporators for a seawater cooling system to maintain proper seawater temperature in a fish tank. Experiments were conducted to investigate the heat transfer characteristics by changing the seawater temperature, flow rate, and saturation temperature of the refrigerant. It was confirmed that the heat transfer coefficient of an aluminum-brass tube was approximately 10% higher than that of a copper-nickel tube at the same heat flux. Furthermore, it was confirmed that applying the aluminum-brass tube to the heat transfer tube of a seawater heat exchanger was effective in terms of heat transfer. A comparison of the overall heat transfer coefficient of a single-tube heat exchanger and the flooded-type multi-tube heat exchanger for an 18-kW cooling system showed that the heat transfer coefficient of the single-tube heat exchanger was 25% higher under the same conditions. These results are considered to be important data for designing a flooded-type multi-tube heat exchanger.

Experimental Study of Laser Assisted Microvascular Anastomosis(LAMA) Using the Nd:YAG Contact Laser (Laser를 이용한 새로운 미세혈관 문합술의 실험적 연구)

  • Cho, Jin-Hwan;Lim, Jae-Ho;Park, Seung-Ha;Kim, Woo-Kyung
    • Archives of Reconstructive Microsurgery
    • /
    • v.2 no.1
    • /
    • pp.82-92
    • /
    • 1993
  • A comparative study was undertaken to evaluate the contact Neo-dymium : yttrium aluminum garnet(Nd:YAG) laser system for vascular anastomosis of small caliber blood vessels(diameter 0.5-1.2 mm) in the animal model. In this study 40 femoral arteries and 40 femoral veins of Sprague-Dawley rats were anastomosed by contact laser assisted microvascular anastomosis(LAMA) utilizing 3 stay sutures which were placed 120 degrees apart and the intervals welded with contact Nd:YAG laser unit, conventionally sutured anastomosis(CSA) served as controls. The time needed for vascular anastomosis, patency rate(immediate postoperative, postoperative 2nd day, postoperative 1 week, postoperative 4 weeks), gross and microscopic evaluations were compared to conventional microsurgical suture technique. The results are as follows: 1. Postoperative patency rate was 82.5% for femoral artery and 75% for femoral vein by contact LAMA technique compared to 90% and 75% by CSA technique at postoperative 4 weeks. 2. Less time-consumed for arterial anastomosis by 6 minutes 23 seconds and venous anastomosis by 8 minutes 55 seconds with contact LAMA technique compared to CSA technique. 3. Grossly almost complete healing had taken place by postoperative 1 week by contact LAMA technique. 4. Aneurysm formation was 5% for femoral artery and 15% for femoral vein by contact LAMA technique compared to 5% and 10% respectively by CSA technique. 5. Microscopically, re-endothelization was complete by postoperative 7th day by contact LAMA technique. There was less medial hypertrophy and hyperplasia and also less inflammatory response compared to CSA.

  • PDF

A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms (열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구)

  • Bae, So Young;Kang, Gyu-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel (Type III 고압수소저장용기의 설계 안전성 연구)

  • Park, Woo Rim;Jeon, Sang Koo;Kim, Song Mi;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.

The Analysis of Collapse Load of Thick Pressure Cylinder under External Hydrostatic Pressure (외압을 받는 두꺼운 원통형 내압용기의 붕괴하중 해석)

  • Lee, Jae-Hwan;Park, Byoungjae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.175-186
    • /
    • 2019
  • Number of studies on the buckling of thin cylindrical pressure vessels, such as submarine pressure hull and pipe with a large ratio of diameter/thickness, have been carried out in the naval and ocean engineering. However, research about thick cylinder pressure vessel has not been active except for the specific application in nuclear area. There are not many papers for the estimation of buckling and ultimate load capacity of thick cylinders for the deep sea usage. Thus, it is important to understand the theoretical bases of the buckling and collapse process and the derivation process of such loads for the proper design and structural analysis. The objective of this study is to survey the collapse behavior, to analyse and clarify the derivation procedure and to estimate the ultimate collapse load for thick cylinder by analyzing relevant books and papers. It is found that the yielding begins at the internal surface of the thick cylinder and plasticity develops from the internal surface to the external surface to generate collapse. Also the initial imperfection of cylinder develops flattening and consequently accelerates buckling and finally ultimate collapse. By comparing the collapse loads of aluminum thick cylinder by applying equations herein, it is shown that the equations analyzed are appropriate to obtain collapse load for thick cylinder.

Feasibility Study of a 500-ton Class Patrol Vessel Made of Carbon Fiber Reinforced Polymer (500톤급 탄소섬유 복합소재 경비함 건조가능성 검토)

  • Jang, Jaewon;Lee, Sang-Gyu;Zhang, Haiyang;Maydison, Maydison;Lee, Ju-Hyeong;Oh, Daekyun;Im, Sanghyuk;Kwon, Yongwon;Hwang, Inhyuck;Han, Zhiqiang
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.347-358
    • /
    • 2022
  • Carbon fiber is an excellent structural material, which has been proven in many industries, and the shipbuilding industry is no exception. In particular, in advanced maritime countries, special ships of the Navy and Coast Guard with carbon fiber composite hulls have already been deployed. In Korea, carbon fiber composite materials have been applied to a 10-ton class leisure craft or a 30-ton class patrol, but no research has been done on a hundred of tons or more vessels. In this study, the feasibility study of a 500-ton patrol vessel with a carbon fiber composite hull was conducted through an analysis of similar cases abroad. As a result, it was recognized that the developed hull can be reduced in weight by about 21% to 25% compared to the existing aluminum or FRP hull. It was also confirmed that this light-weight effect can induce the improvement of the maximum speed and the improvement of the operating range via simulations.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.