• Title/Summary/Keyword: Aluminum nanoparticles

Search Result 45, Processing Time 0.023 seconds

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum yin Electrophoretic Method (전기영동법으로 알루미늄에 침적된 영가 철 나노입자에 의한 질산성 질소의 환원)

  • Ryoo, Won
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • Reductive reactivity of zero-valent iron nanoparticles was investigated for removal of nitrate-nitrogen which is considered one of the major water pollutants. To elucidate the difference in reactivity between preparation methods, iron nanoparticles were synthesized respectively from microemulsion and aqueous solution of ferric ions. Iron nanoparticles prepared from microemulsion were deposited on aluminum by electrophoretic method, and their reaction kinetics was compared to that of the same nanoparticles suspended in aqueous batch reaction. With an approximation of pseudo-first-order reaction, rate constants for suspended nanoparticles prepared from microemulsion and dilute aqueous solution were $3.49{\times}10^{-2}min^{-1}$ and $1.40{\times}10^{-2}min^{-1}$, respectively. Iron nanoparticles supported on aluminum showed ca. 30% less reaction rate in comparison with the identical nanoparticles in suspended state. However, supported nanoparticles showed the superior effectiveness in terms of nitrate-nitrogen removal per zero-valent iron input especially when excess amounts of nitrates were present. Iron nanoparticles deposited on aluminum maintained reductive reactivity for more than 3 hours, and produced nitrogen gas as a final reduction product of nitrate-nitrogen.

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

Template-free Synthesis and Characterization of Spherical Y3Al5O12:Ce3+ (YAG:Ce) Nanoparticles

  • Kim, Taekeun;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2917-2921
    • /
    • 2014
  • Cerium-activated yttrium aluminate ($Y_3Al_5O_{12}:Ce^{3+}$) exhibiting a garnet structure has been widely utilized in the production of light emitting diodes (LEDs) as a yellow emitting phosphor. The commercialized yttrium aluminum garnet (YAG) phosphor is typically synthesized by a solid-state reaction, which produces irregular shape particles with a size of several tens of micrometers by using the top-down method. To control the shape and size of particles, which had been the primary disadvantage of top-down synthetic methods, we synthesized YAG:Ce nanoparticles with a diameter of 500 nm using a coprecipitation method under the atmospheric pressure without the use of template or special equipment. The precursor particles were formed by refluxing an aqueous solution of the nitrate salts of Y, Al, and Ce, urea, and polyvinylpyrrolidone (55 K) at $100^{\circ}C$ for 12 h. YAG:Ce nanoparticles were formed by the calcination of precursor particles at $1100^{\circ}C$ for 10 h under atmospheric conditions. The phase identification, microstructure, and photoluminescent properties of the products were evaluated by X-ray powder diffraction, scanning electron microscopy, absorption spectrum and photoluminescence analyses.

Effects of Aluminum Nanoparticles on Thermal Decomposition of Ammonium Perchlorate

  • Zhu, Yan-Li;Huang, Hao;Ren, Hui;Jiao, Qing-Jie
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • The effects of aluminum nanoparticles (AlNs) on the thermal decomposition of ammonia perchlorate (AP) were investigated by DSC, TG-DSC and DSC-TG-MS-FTIR. Addition of AlNs resulted in an increase in the temperature of the first exothermic peak of AP and a decrease in the second. The processing of non-isothermal data at various heating rates with and without AlNs was performed using Netzsch Thermokinetics. The dependence of the activation energy calculated by Friedman's isoconversional method on the conversion degree indicated the decomposition process can be divided into three steps. They were C1/D1/D1 for neat AP, determined by Multivariate Non-linear Regression, and changed to C1/D1/F2 after addition of AlNs into AP. The isothermal curves showed that the thermal stability of AP in the low temperature stage was improved in the presence of AlNs.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Twenty-Eight-Day Repeated Inhalation Toxicity Study of Aluminum Oxide Nanoparticles in Male Sprague-Dawley Rats

  • Kim, Yong-Soon;Chung, Yong-Hyun;Seo, Dong-Seok;Choi, Hyun-Sung;Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.343-354
    • /
    • 2018
  • Aluminum oxide nanoparticles ($Al_2O_3$ NPs) are among the most widely used nanomaterials; however, relatively little information about their risk identification and assessment is available. In the present study, we aimed to investigate the potential toxicity of $Al_2O_3$ NPs following repeated inhalation exposure in male Sprague-Dawley rats. Rats were exposed to $Al_2O_3$ NPs for 28 days (5 days/week) at doses of 0, 0.2, 1, and $5mg/m^3$ using a nose-only inhalation system. During the experimental period, we evaluated the clinical signs, body weight change, hematological and serum biochemical parameters, necropsy findings, organ weight, and histopathology findings. Additionally, we analyzed the bronchoalveolar lavage fluid (BALF), including differential leukocyte counts, and aluminum contents in the major organs and blood. Aluminum contents were the highest in lung tissues and showed a dose-dependent relationship in the exposure group. Histopathology showed alveolar macrophage accumulation in the lungs of rats in the $5mg/m^3$ group during exposure and recovery. These changes tended to increase at the end of the recovery period. In the BALF analysis, total cell and neutrophil counts and lactate dehydrogenase, tumor necrosis factor-${\alpha}$, and interleukin-6 levels significantly increased in the 1 and $5mg/m^3$ groups during exposure. Under the present experimental conditions, we suggested that the no-observed-adverse-effect level of $Al_2O_3$ NPs in male rats was $1mg/m^3$, and the target organ was the lung.

Synthesis of Silver Nanoparticles using Pulse Electrolysis in 1-n-butyl-3-methylimidazolium Chloride Ionic Liquid

  • Jeonggeun Jang;Jihee Kim;Churl Kyoung Lee;Kyungjung Kwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • Ionic liquids are considered as a promising, alternative solvent for the electrochemical synthesis of metals because of their high thermal and chemical stability, relatively high ionic conductivity, and wide electrochemical window. In particular, their wide electrochemical window enables the electrodeposition of metals without any side reaction of electrolytes such as hydrogen evolution. The electrodeposition of silver is conducted in 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid system with a silver source of AgCl. This study is the first attempt to electrodeposit silver nanoparticles without using co-solvents other than [C4mim]Cl. Pulse electrolysis is employed for the synthesis of silver nanoparticles by varying applied potentials from -3.0 V to -4.5 V (vs. Pt-quasi reference electrode) and pulse duration from 0.1 s to 0.7 s. Accordingly, the silver nanoparticles whose size ranges from 15 nm to ~100 nm are obtained. The successful preparation of silver nanoparticles is demonstrated regardless of the kinds of substrate including aluminum, stainless steel, and carbon paper in the pulse electrolysis. Finally, the antimicrobial property of electrodeposited silver nanoparticles is confirmed by an antimicrobial test using Staphylococcus aureus.

Physical Properties of Indium Reduced Materials for Transparent Conductive Electrodes

  • Kwak, Seung-Hoon;Kwak, Min-Gi;Hong, Sung-Jei;Ju, Byeong-Kwon;Han, Jeong In
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.14-17
    • /
    • 2014
  • In this paper, indium reduced materials for transparent conductive electrodes (TCE) were fabricated and their physical properties were evaluated. Two of materials, indium-zinc-tin oxide (IZTO) and aluminum (Al) were selected as TCE materials. In case of IZTO nanoparticles, composition ratios of In, Zn and Sn is 8:1:1 were synthesized. Size of the synthesized IZTO nanoparticles were less than 10 nm, and specific surface areas were about $90m^2/g$ indicating particle sizes are very fine. Also, the IZTO nanoparticles were well crystallized with (222) preferred orientation despite it was synthesized at the lowered temperature of $300^{\circ}C$. Composition ratios of In, Zn and Sn were very uniform in accordance with those as designed. Meanwhile, Al was deposited onto glass by sputtering in a vacuum chamber for mesh architecture. The Al was well deposited onto the glass, and no pore was observed from the Al surface. The sheet resistance of Al on glass was about $0.3{\Omega}/{\square}$ with small deviation of $0.025{\Omega}/{\square}$, and adhesion was good on the glass substrate since no pelt-off part of Al was observed by tape test. If the Al mesh is combined with ink coated layer which is consistent of IZTO nanoparticles, it is expected that the good and reliable metal mesh architecture for TCE will be formed.

Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator

  • Efimov, Alexey;Lizunova, Anna;Sukharev, Valentin;Ivanov, Victor
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.123-129
    • /
    • 2016
  • The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of $TiO_2$ and $Al_2O_3$ or aggregates of primary particles of $Cu_2O$. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for $Cu_2O$ to 46.1 nm for $Al_2O_3$.