DOI QR코드

DOI QR Code

Synthesis of Silver Nanoparticles using Pulse Electrolysis in 1-n-butyl-3-methylimidazolium Chloride Ionic Liquid

  • Jeonggeun Jang (Samsung Electronics) ;
  • Jihee Kim (Samsung Electronics) ;
  • Churl Kyoung Lee (School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Kyungjung Kwon (Department of Energy & Mineral Resources Engineering, Sejong University)
  • Received : 2022.07.07
  • Accepted : 2022.08.10
  • Published : 2023.02.28

Abstract

Ionic liquids are considered as a promising, alternative solvent for the electrochemical synthesis of metals because of their high thermal and chemical stability, relatively high ionic conductivity, and wide electrochemical window. In particular, their wide electrochemical window enables the electrodeposition of metals without any side reaction of electrolytes such as hydrogen evolution. The electrodeposition of silver is conducted in 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) ionic liquid system with a silver source of AgCl. This study is the first attempt to electrodeposit silver nanoparticles without using co-solvents other than [C4mim]Cl. Pulse electrolysis is employed for the synthesis of silver nanoparticles by varying applied potentials from -3.0 V to -4.5 V (vs. Pt-quasi reference electrode) and pulse duration from 0.1 s to 0.7 s. Accordingly, the silver nanoparticles whose size ranges from 15 nm to ~100 nm are obtained. The successful preparation of silver nanoparticles is demonstrated regardless of the kinds of substrate including aluminum, stainless steel, and carbon paper in the pulse electrolysis. Finally, the antimicrobial property of electrodeposited silver nanoparticles is confirmed by an antimicrobial test using Staphylococcus aureus.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038540) and the Ministry of Science and ICT (2020R1F1A1053911).

References

  1. K. Kwon, K. H. Lee, D. H. Um, S. Jin, H. S. Park, J. Cho, J. Hyun, H. C. Ham, and C. Pak, J. Ind. Eng. Chem., 2021, 97, 280-286. https://doi.org/10.1016/j.jiec.2021.02.013
  2. D. J. You, K. Kwon, S. H. Joo, J. H. Kim, J. M. Kim, C. Pak, and H. Chang, Int. J. Hydrog. Energy, 2012, 37(8), 6880-6885. https://doi.org/10.1016/j.ijhydene.2012.01.103
  3. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari, Res. Pharm. Sci., 2014, 9(6), 385-406.
  4. K. M. M. A. El-Nour, A. Eftaiha, A. Al-Warthan, and R. A. A. Ammar, Arab. J. Chem., 2010, 3(3), 135-140. https://doi.org/10.1016/j.arabjc.2010.04.008
  5. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv., 2009, 27(1), 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  6. S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S. R. K. Pandian, J. Muniyandi, N. Hariharan, and S. H. Eom, Colloid. Surf. B, 2009, 74(1), 328-335. https://doi.org/10.1016/j.colsurfb.2009.07.048
  7. K. Shameli, M. B. Ahmad, E. A. J. Al-Mulla, N. A. Ibrahim, P. Shabanzadeh, A. Rustaiyan, Y. Abdollahi, S. Bagheri, S. Abdolmohammadi, M. S. Usman, and M. Zidan, Moleclues, 2012, 17(7), 8506-8517. https://doi.org/10.3390/molecules17078506
  8. B. R. Cuenya, Thin Solid Films, 2010, 518(2), 3127- 3150. https://doi.org/10.1016/j.tsf.2010.01.018
  9. A. Singh, D. Jain, M. K. Upadhyay, N. Khandelwal, and H. Verma, Dig. J. Nanomater. Biostructures, 2010, 5(2), 483-489.
  10. S. Saravanan, S. Nethala, S. Pattnaik, A. Tripathi, A. Moorthi, and N. Selvamurugan, Int. J. Biol. Macromol., 2011, 49(2), 188-193. https://doi.org/10.1016/j.ijbiomac.2011.04.010
  11. R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, and M. Burkhardt, Environ. Pollut., 2010, 158(9), 2900-2905. https://doi.org/10.1016/j.envpol.2010.06.009
  12. K. Chaloupka, Y. Malam, and A. M. Seifalian, Trends Biotechnol., 2010, 28(11), 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006
  13. Y. Yang, J. Wang, Z. Xiu, and P. J. J. Alvarez, Environ. Toxicol. Chem., 2013, 32(7), 1488-1494. https://doi.org/10.1002/etc.2230
  14. I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 2004, 275(1), 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
  15. D. Debnath, C. Kim, S. H. Kim, and K. E. Geckeler, Macromol. Rapid Commun., 2010, 31(6), 549-553. https://doi.org/10.1002/marc.200900656
  16. I. Pardinas-Blanco, C. E. Hoppe, M. A. Lopez-Quintela, and J. Rivas, J. Non-Cryst. Solids, 2007, 353(8-10), 826-828. https://doi.org/10.1016/j.jnoncrysol.2007.01.020
  17. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina, Acta Naturae, 2014, 6(1), 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  18. A. N. Shipway, E. Katz, and I. Willner, ChemPhysChem, 2000, 1(1), 18-52. https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  19. Y. Lu, K. Korf, Y. Kambe, Z. Tu, and L. A. Archer, Angew. Chem. Int. Ed., 2014, 53(2), 488-492. https://doi.org/10.1002/anie.201307137
  20. J.-O. Lee, G. Park, J. Park, Y. Cho, and C. K. Lee, Int. J. Precis. Eng. Manuf., 2015, 16, 1229-1232. https://doi.org/10.1007/s12541-015-0159-1
  21. Y. Jung, B. Dilasari, W.-S. Bae, H.-I. Kim, and K. Kwon, RSC Adv., 2020, 10, 24115-24118. https://doi.org/10.1039/D0RA03598J
  22. B. Dilasari, Y. Jung, G. Kim, and K. Kwon, ACS Sustain. Chem. Eng., 2016, 4(2), 491-496. https://doi.org/10.1021/acssuschemeng.5b00987
  23. J. Park, C. K. Lee, K. Kwon, and H. Kim, Int. J. Electrochem. Sci., 2013, 8, 4206-4214. https://doi.org/10.1016/S1452-3981(23)14466-X
  24. S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, J. Phys. Chem. Ref. Data, 2006, 35, 1475-1517. https://doi.org/10.1063/1.2204959
  25. J. Park, Y. Jung, P. Kusumah, J. Lee, K. Kwon, and C. K. Lee, Int. J. Mol. Sci., 2014, 15(9), 15320-15343. https://doi.org/10.3390/ijms150915320
  26. F. Endres and W. Freyland, J. Phys. Chem. B, 1998, 102(50), 10229-10233. https://doi.org/10.1021/jp9824048
  27. Y. Li, Q. Qiang, X. Zheng, and Z. Wang, Electrochem. Commun., 2015, 58, 41-45. https://doi.org/10.1016/j.elecom.2015.05.020
  28. Y. Li, Z. Wang, and C. Zhao, J. Electrochem. Soc., 2016, 163(8), D442-D446. https://doi.org/10.1149/2.1251608jes
  29. J. Yu and X. Zhou, Adv. Mater. Sci. Eng., 2013, 2013, 519294.
  30. C. L. Liang, K. Zhong, M. Liu, L. Jiang, S. K. Liu, D. D. Xing, H. Y. Li, Y. Na, W. X. Zhao, Y. X. Tong, and P. Liu, Nano-Micro Lett., 2010, 2, 6-10. https://doi.org/10.1007/BF03353609
  31. M. Miranda-Hernandez, I. Gonzalez, and N. Batina, J. Phys. Chem. B, 2001, 105(19), 4214-4223. https://doi.org/10.1021/jp002057d