Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.2917

Template-free Synthesis and Characterization of Spherical Y3Al5O12:Ce3+ (YAG:Ce) Nanoparticles  

Kim, Taekeun (Department of Chemistry, Seoul National University)
Lee, Jin-Kyu (Department of Chemistry, Seoul National University)
Publication Information
Abstract
Cerium-activated yttrium aluminate ($Y_3Al_5O_{12}:Ce^{3+}$) exhibiting a garnet structure has been widely utilized in the production of light emitting diodes (LEDs) as a yellow emitting phosphor. The commercialized yttrium aluminum garnet (YAG) phosphor is typically synthesized by a solid-state reaction, which produces irregular shape particles with a size of several tens of micrometers by using the top-down method. To control the shape and size of particles, which had been the primary disadvantage of top-down synthetic methods, we synthesized YAG:Ce nanoparticles with a diameter of 500 nm using a coprecipitation method under the atmospheric pressure without the use of template or special equipment. The precursor particles were formed by refluxing an aqueous solution of the nitrate salts of Y, Al, and Ce, urea, and polyvinylpyrrolidone (55 K) at $100^{\circ}C$ for 12 h. YAG:Ce nanoparticles were formed by the calcination of precursor particles at $1100^{\circ}C$ for 10 h under atmospheric conditions. The phase identification, microstructure, and photoluminescent properties of the products were evaluated by X-ray powder diffraction, scanning electron microscopy, absorption spectrum and photoluminescence analyses.
Keywords
Yttrium aluminum garnet; Cerium doping; Phosphor nanoparticle; Template-free synthesis; Co-precipitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhat, S. V.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 2006, 422, 323.   DOI
2 Moreno, I.; Sun, C. C. Opt. Express 2008, 16, 1808.   DOI
3 Pereira, P. F. S.; Matos, M. G.; Avila, L. R.; Nassor, E. C. O.; Cestari, A.; Ciuffi, K. J.; Calefi, P. S.; Nassar, E. J. J. Lumin. 2010, 130, 488.   DOI
4 Shao, Q. Y.; Li, H. J.; Dong, Y.; Jiang, J. Q.; Liang, C.; He, J. H. J. Alloy. Compd. 2010, 498, 199.   DOI
5 Xia, G. D.; Zhou, S. M.; Zhang, J. J.; Xu, J. J. Cryst. Growth 2005, 279, 357.   DOI   ScienceOn
6 Kim, H. T.; Kim, J. H.; Hong, Y. J.; Lee, J. K.; Kang, Y. C. Electron. Mater. Lett. 2012, 8, 283.   DOI
7 Huczko, A.; Kurcz, M.; Baranowski, P.; Bystrzejewski, M.; Bhattarai, A.; Dyjak, S.; Bhatta, R.; Pokhrel, B.; Kafle, B. P. Phys. Status Solidi B 2013, 250, 2702.   DOI
8 Chen, Z. H.; Yang, Y.; Hu, Z. G.; Li, J. T.; He, S. L. J. Alloy. Compd. 2007, 433, 328.   DOI
9 Hassanzadeh-Tabrizi, S. A. Adv. Powder Technol. 2012, 23, 324.   DOI
10 Li, X. X.; Zheng, B. Y.; Odoom-Wubah, T.; Huang, J. L. Ceram. Int. 2013, 39, 7983.   DOI
11 Song, H. J.; Noh, J. H.; Roh, H. S.; Kim, J. S.; Kim, D. W.; Hong, K. S. Curr. Appl. Phys. 2013, 13, S69.   DOI
12 Kottaisamy, M.; Thiyagarajan, P.; Mishra, J.; Rao, M. S. R. Mater. Res. Bull. 2008, 43, 1657.   DOI   ScienceOn
13 Popovici, E. J.; Morar, M.; Bica, E.; Perhaita, I.; Cadis, A. I.; Indrea, E.; Barbu-Tudoran, L. J. Optoelectron. Adv. M 2011, 13, 617.
14 Popovici, E. J.; Muresan, L.; Amalia, H.; Indrea, E.; Vasilescu, M. J. Alloy. Compd. 2007, 434, 809.
15 Ye, S.; Xiao, F.; Pan, Y. X.; Ma, Y. Y.; Zhang, Q. Y. Mat. Sci. Eng. R 2010, 71, 1.   DOI   ScienceOn
16 Won, C. W.; Nersisyan, H. H.; Won, H. I.; Lee, J. H.; Lee, K. H. J. Alloy. Compd. 2011, 509, 2621.   DOI   ScienceOn
17 Murai, S.; Fujita, K.; Iwata, K.; Tanaka, K. Opt. Mater. 2010, 33, 123.   DOI
18 Yang, Z. P.; Li, X.; Yang, Y.; Li, X. M. J. Lumin. 2007, 122, 707.
19 Jia, N. T.; Zhang, X. D.; He, W.; Hu, W. J.; Meng, X. P.; Du, Y.; Jiang, J. C.; Du, Y. W. J. Alloy. Compd. 2011, 509, 1848.   DOI
20 Lee, S. H.; Jung, D. S.; Han, J. M.; Koo, H. Y.; Kang, Y. C. J. Alloy. Compd. 2009, 477, 776.   DOI
21 Wang, Y.; Yuan, P.; Xu, H. Y.; Wang, J. Q. J. Rare Earth. 2006, 24, 183.   DOI
22 Chiang, C. C.; Tsai, M. S.; Hsiao, C. S.; Hon, M. H. J. Alloy. Compd. 2006, 416, 265.   DOI   ScienceOn
23 Ogata, H.; Takeshita, S.; Isobe, T.; Sawayama, T.; Niikura, S. Opt. Mater. 2011, 33, 1820.   DOI
24 Kasuya, R.; Isobe, T.; Kuma, H.; Katano, J. J. Phys. Chem. B 2005, 109, 22126.   DOI   ScienceOn
25 Yang, H. J.; Yuan, L.; Zhu, G. S.; Yu, A. B.; Xu, H. R. Mater. Lett. 2009, 63, 2271.   DOI   ScienceOn
26 Marius, M.; Popovici, E. J.; Barbu-Tudoran, L.; Indrea, E.; Mesaros, A. Ceram. Int. 2014, 40, 6233.   DOI
27 Sordelet, D. J.; Akinc, M.; Panchula, M. L.; Han, Y.; Han, M. H. J. Eur. Ceram. Soc. 1994, 14, 123.   DOI
28 Purwanto, A.; Wang, W. N.; Ogi, T.; Lenggoro, I. W.; Tanabe, E.; Okuyama, K. J. Alloy. Compd. 2008, 463, 350.   DOI   ScienceOn
29 Lu, C. H.; Hong, H. C.; Jagannathan, R. J. Mater. Chem. 2002, 12, 2525.   DOI   ScienceOn
30 Mueller-Mach, R.; Mueller, G. O.; Krames, M. R.; Trottier, T. Ieee J. Sel. Top. Quant. 2002, 8, 339.   DOI   ScienceOn
31 Muresan, L.; Popovici, E. J.; Grecu, R.; Tudoran, L. B. J. Alloy. Compd. 2009, 471, 421.   DOI
32 Yang, S. K.; Que, W. X.; Chen, J.; Liu, W. G. Ceram. Int. 2012, 38, 3185.   DOI