• 제목/요약/키워드: Aluminum doping

검색결과 64건 처리시간 0.031초

Analysis of Aluminum Back Surface Field on Different Wafer Specification

  • 박성은;배수현;김성탁;김찬석;김영도;탁성주;김동환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.216-216
    • /
    • 2012
  • The purpose of this work is to investigate a back surface field (BSF) on variety wafer resistivity for industrial crystalline silicon solar cells. As pointed out in this manuscript, doping a crucible grown Cz Si ingot with Ga offers a sure way of eliminating the light induced degradation (LID) because the LID defect is composed of B and O complex. However, the low segregation coefficient of Ga in Si causes a much wider resistivity variation along the Ga doped Cz Si ingot. Because of the resistivity variation the Cz Si wafer from different locations has different performance as know. In the light of B doped wafer, we made wider resistivity in Si ingot; we investigated the how resistivities work on the solar cells performance as a BSF quality.

  • PDF

SiO2 첨가가 AIN 세라믹스의 고온 비저항에 미치는 영향 (Effects of SiO2 on the High Temperature Resistivities of AIN Ceramics)

  • 이원진;김형태;이성민
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.69-74
    • /
    • 2008
  • The effects of $SiO_2$ impurity on the high temperature resistivities of AIN ceramics have been investigated. When $SiO_2$ was added into 1 wt% $Y_2O_3$-doped AIN, DC resistivities have decreased and electrode polarizations disappeared. Impedance spectroscopy showed two semi-circles at $600^{\circ}C$, which were attributed to grain and grain boundary, respectively. $SiO_2$ doping had more significant effects on the grain resistivity than grain boundary resistivity, implying that doped Si acted as a donor in AIN lattice. In addition, voltage dependency of DC resistivity was observed, which might be related to dependency of size of grain boundary semi-circle on the bias voltage in impedance spectroscopy.

Alq$_3$를 이용한 다층 구조의 ELD 특성 연군 (A Study on the properties of ELD of Mu1tistructure Using by Alq$_3$)

  • 채수길;김태완;강도열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.116-119
    • /
    • 1997
  • In this paper A double-layer organic electroluminescent(EL) device was fabricated using a TPD(N,N'-dipheny] -N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4.4'-diamine: aromatic diamine), as a hole-transport material and tris (8-hydroxy quinolinate) aluminum(Alq$_3$) as a an emiting material and its performance characteristics were investigated. structure of devices is ITO/TPD/Alq$_3$/Al. we have fabricated hole transport layer of two types. Doping material of Hole Transport material is Poly(methyl methacrylate)(PMMA) and PEI(Poly-Ether-Imide). Carrier injection from the electrodes to the doped PMMA and PEI layer through the dopants and concomitant electroluminescence from Alq$_3$were observed. Green emission with luminance of 40cd/m$^2$was achieved at a drive voltage of 30V

  • PDF

도프형 유기 EL 소자의 전기-광 변환소자 응용 (Application to the Electro-Optical Conversion Device of OLEDs)

  • 김주승;민용기;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 광주전남지부
    • /
    • pp.114-118
    • /
    • 2006
  • We investigated the transient electroluminescence (EL) and modulation characteristics of red organic light-emitting diodes (OLEDs), which consist with 4-(dicyanomethylene)-2-i -propyl-6-(1,1,7,7-tetramethyljulolidyl-9-cnyl)-4H-pyran (DCJTI) and rubrene doped into tris(8-hydroxyquinoline)aluminum ($Alq_3$). The transient EL waveforms showed two components, the overshooting peak and constant component, indicating that the excess amount of accumulated charges simultaneously recombine at the onset moment. This overshooting effect reduced the rise time of transient EL and enhanced the optical output of OLEDs when the pulse voltage applied to the device. We demonstrated that the red OLEDs could be use for the high-speed switching application by driving at more than 100 MHz and transmitting the video signals utilized as the electro-optical conversion device

  • PDF

에너지전달을 이용한 가시광 Light Source의 발광특성에 관한 연구 (Study on the Emission Properties of Visible Light Source using Energy Transfer)

  • 구할본;김주승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.486-489
    • /
    • 2003
  • Red organic electroluminescent(EL) devices based on poly(N-vinylcarbazole)(PVK) and tris(8-hydroxyquinorine aluminum)($Alq_3$) doped with red emissive material, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran(DCJTB), poly(3-hexylthiophene)(P3HT), Rubrene and 4-dicyanomethylene-2-methyl-6[2-(2,3,6,7-tetrahydro-1H,5H-benzo-[i.j])quinolizin-8yl)vinyl-4H-pyran(DCM2) were fabricated. We examine the energy transfer from $Alq_3$ to DCJTB, P3HT, Rubrene and DCM2 by comparing between the PL and EL spectrum. The maximum peak PL intensities were achieved when the doping concentration of DCJTB, DCM2, P3HT and Rubrene has 5, 1, 0.5, 2wt%, respectively. The maximum luminance of device using DCJTB showed $594\;cd/m^2$ at 15V.

  • PDF

폴리머 기판위에 증착된 ZnO:Al 전도막의 특성연구 (Characterization of conducting aluminium doped zinc oxide (ZnO:Al) thin films deposited on polymer substrates)

  • 구홍모;김쇄현;박종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.535-538
    • /
    • 2004
  • Zinc Oxide (ZnO) films have attracted considerable attention for transparent conducting films, because of their high conductivity, good optical transmittance from UV to near IR as well as a low-cost fabrication. To increase the conductivity of ZnO, doping of group III elements (Al, Ga, In and B) has been carried out. Transparent conducting films have been applied for optoelectric devices, the development of the transparent conducting thin films on flexible light-weight substrates are required. In this research, the transparent conducting ZnO thin films doped with Aluminum (Al) on polymer substrates were deposited by the RF magnetron suputtering method, and the structural, optical and electrical properties were investigated.

  • PDF

Boron 확산공정을 이용한 5,000V, 4인치 광 사이리스터의 제작 및 특성 평가 (Fabrication of 5,000V, 4-Inch Light Triggered Thyristor using Boron Diffusion Process and its Characterization)

  • 박건식;조두형;원종일;이병하;배영석;구인수
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.411-418
    • /
    • 2019
  • Light-triggered thyristors (LTTs) are essential components in high-power applications, such as HVDC transmission and several pulsed-power applications. Generally, LTT fabrication includes a deep diffusion of aluminum as a p-type dopant to form a uniform p-base region, which needs careful concern for contamination and additional facilities in silicon semiconductor manufacturing factories. We fabricated 4-inch 5,000 V LTTs with boron implantation and diffusion process as a p-type dopant. The LTT contains a main cathode region, edge termination designed with a variation of lateral doping, breakover diode, integrated resistor, photosensitive area, and dV/dt protection region. The doping concentration of each region was adjusted with different doses of boron ion implantation. The fabricated LTTs showed good light triggering characteristics for a light pulse of 905 nm and a blocking voltage (VDRM) of 6,500 V. They drove an average on-state current (ITAVM) of 2,270 A, peak nonrepetitive surge current (ITSM) of 61 kA, critical rate of rise of on-state current (di/dt) of 1,010 A/㎲, and limiting load integral (I2T) of 17 MA2s without damage to the device.

상온에서 성막한 고감도의 Al1-xScxN 박막의 압력 감지 특성 (Pressure Sensing Properties of Al1-xScxN Thin Films Sputtered at Room Temperature)

  • 석혜원;김세기;강양구;이영진;홍연우;주병권
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.420-424
    • /
    • 2014
  • Aluminum-scandium nitride ($Al_{1-x}Sc_xN$) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 50% $N_2$/Ar. The effect of Sc-doping on the structure and piezoelectric properties of AlN films has been investigated using SEM, XRD, surface profiler and pressure-voltage measurements. The as-deposited AlN films showed polycrystalline phase, and the Sc-doped AlN film, the peak of AlN (002) plane and the crystallinity became very strong. With Sc-doping, the crystal size of AlN film was grown from ~20 nm to ~100 nm. The output signal voltage of AlN sensor showed a linear behavior between 15~65 mV, and output signal voltage of Sc-doped AlN sensor was increased over 7 times. The pressure-sensing sensitivity of AlN film was calculated about 10.6mV/MPa, and $Al_{0.88}Sc_{0.12}N$ film was calculated about 76 mV/MPa.

에너지전달을 이용한 가시광 Light Source의 발광특성에 관한 연구 (Study on the Emission Properties of Visible Light Source using Energy Transfer)

  • 구할본;김주승;김종욱
    • 한국전기전자재료학회논문지
    • /
    • 제17권11호
    • /
    • pp.1212-1217
    • /
    • 2004
  • Red organic electroluminescent (EL) devices based on tris(8-hydroxyquinorine aluminum) (Alq$_3$) doped with red emissive materials, 4-(dicyanomethylene)-2-t-butyl -6-(l,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB). poly(3-hexylthiophene) (P3HT). rubrene and 4-dicyanomethylene-2-methyl-6[2-(2,3.6.7-tetrahydro-lH,5H-benzo-[i,j]quinolizin-8yl)vinyl]-4H-pyran (DCM2) were fabricated for applying to the red light source, The photoluminescence (pL) intensities of red emissive materials doped in Alq$_3$ are limited by the concentration quenching with increasing the doping ratio and the doping concentration of DCJTB, DCM2, P3HT and rubrene measured at the maximum intensity showed 5, 1, 0.5 and 2 wt%, respectively. Time-resolved PL dynamic results showed that the PL lifetime of red emissive materials doped in Alq$_3$ were increased more than the value of material itself. It means that the efficient energy transfer occurred in the mixed state and Alq$_3$ is a suitable host materials for red emissive materials, The device which was used DCJTB as a dopant achieved the best result of the maximum luminance of 594 cd/$m^2$ at 15 V and showed the chromaticity coordinates of x=0,624, y=0,371.

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF