• Title/Summary/Keyword: Aluminum contamination

Search Result 52, Processing Time 0.033 seconds

Fabrication of 5,000V, 4-Inch Light Triggered Thyristor using Boron Diffusion Process and its Characterization (Boron 확산공정을 이용한 5,000V, 4인치 광 사이리스터의 제작 및 특성 평가)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jongil;Lee, Byungha;Bae, Youngseok;Koo, Insu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.411-418
    • /
    • 2019
  • Light-triggered thyristors (LTTs) are essential components in high-power applications, such as HVDC transmission and several pulsed-power applications. Generally, LTT fabrication includes a deep diffusion of aluminum as a p-type dopant to form a uniform p-base region, which needs careful concern for contamination and additional facilities in silicon semiconductor manufacturing factories. We fabricated 4-inch 5,000 V LTTs with boron implantation and diffusion process as a p-type dopant. The LTT contains a main cathode region, edge termination designed with a variation of lateral doping, breakover diode, integrated resistor, photosensitive area, and dV/dt protection region. The doping concentration of each region was adjusted with different doses of boron ion implantation. The fabricated LTTs showed good light triggering characteristics for a light pulse of 905 nm and a blocking voltage (VDRM) of 6,500 V. They drove an average on-state current (ITAVM) of 2,270 A, peak nonrepetitive surge current (ITSM) of 61 kA, critical rate of rise of on-state current (di/dt) of 1,010 A/㎲, and limiting load integral (I2T) of 17 MA2s without damage to the device.

Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.391-397
    • /
    • 2014
  • Acid mine drainage occurrence is a serious environmental problem by mining industry; it usually contain high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of greatest concern. It causes mine impacted soil pollution with mining and smelting activities, fossil fuel combustion, and waste disposal. In the present study, three bacterial strains capable of producing urease were isolated by selective enrichment of heavy metal contaminated soils from a minei-mpacted area. All isolated bacterial strains were identified Sporosarcina pasteurii with more than 98% of similarity, therefore they were named Sporosarcina sp. KM-01, KM-07, and KM-12. The heavy metals detected from the collected mine soils containing bacterial isolates as Mn ($170.50mg\;kg^{-1}$), As ($114.05mg\;kg^{-1}$), Zn ($92.07mg\;kg^{-1}$), Cu ($62.44mg\;kg^{-1}$), and Pb ($40.29mg\;kg^{-1}$). The KM-01, KM-07, and KM-12 strains were shown to be able to precipitate calcium carbonate using urea as a energy source that was amended with calcium chloride. SEM-EDS analyses showed that calcium carbonate was successfully produced and increased with time. To confirm the calcium carbonate precipitation ability, urease activity and precipitate weight were also measured and compared. These results demonstrate that all isolated bacterial strains could potentially be used in the bioremediation of acidic soil contaminated by heavy metals by mining activity.

Influences of Plasma Treatment on the Electrical Characteristics of rf-magnefrom sputtered $BaTa_2O_6$ Thin Films (플라즈마 표면 처리가 $BaTa_2O_6$박막의 전기적 특성에 미치는 효과에 관한 연구)

  • Kim, Young-Sik;Lee, Yun-Hi;Ju, Byeong-Kwon;Sung, Mang-Young;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.319-325
    • /
    • 1999
  • Direct current(d.c.)leakage current voltage characteristics of radio-frequencymagnetron sputtered BaTa\sub 2\O\sub 6\ film capacitors with aluminum(A1) top and indium tin oxide (ITO) bottom electrodes have been investigatedas a function of applied field and temperature. In order to study surfacetreatment effect on the electrical characteristics of as-deposited film weperformed exposure of oxygen plasma on $BaTa_2O_6$ surface. d. c.current-voltage (I-V), bipolar pulse charge-voltage (Q-V), d. c. current-time (I-t) andcapacitance-frequency (C-f) analysis were performed on films. All ofthe films exhibita low leakage current, a high breakdown field strength (3MV/cm-4.5MV/cm), and high dielectric constant (20-30). From the temperature dependence of leakage current,we can conclude that the dominant conduction mechanism is ascribed toSchottky emission at high electric field (>1MV/cm) and hopping conduction at lowelectric field (<1MV/cm). According to our results, the oxide plasma surfacetreatmenton as-deposited $BaTa_2O_6$ resulted in lowering interfacebarrier height and thus, leakage current when a negative voltage applied to the A1 electrode. This can be explained by reduction of surface contamination via etching surface and filling defects such as oxygen vacancies.

  • PDF

Evaluation on the Corrosion Resistance of Three Types of Galvanizing Steels in 1% H2SO4 Solution

  • Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Galvanizing method has been extensively used to the numerous constructional steels such as a guard rail of high way, various types of structural steel for ship building and various types of steels for the industrial fields etc.. However, the galvanized structures would be inevitably corroded rapidly with increasing exposed time because an acid rain due to environmental contamination has been much dropped more and more. Therefore, it has been made an effort to improve the corrosion resistance of the galvanizing film through various methods. In this study, comparison evaluation on the corrosion resistance of three types of the samples, that is, the hot dip galvanizing with pure zinc(GI), the hot dip galvanizing of alloy bath with zinc and aluminum(GL) and the pure zinc galvanizing steel immersed again to chromate treatment bath(Chro.)were investigated using electrochemical methods in 1% $H_2SO_4$ solution. The Chro. and GI samples exhibited the highest and lowest corrosion resistance respectively in 1% $H_2SO_4$ solution, however, the GI sample revealed the highest impedance at 0.01 Hz due to its high resistance polarization caused by corrosion products deposited on the surface, while Chro. sample exhibited the lowest impedance at 0.01 Hz because of little corrosion products on the surface. Consequently, it is suggested that the chromate treated steel has a better corrosion resistance in acid environment compared to pure galvanizing(GI) or galvalume(GL) steels.

Changes in Internal and External Temperature and Microbiological Contamination depending on Consumer Behavior after Purchase of Fresh-Cut Produces (대형마트 신선편의식품 소비자의 구매 후 행동에 따른 식품 내·외부 온도 및 미생물학적 오염 변화)

  • Park, Hyun-Jin;Lee, Jeong-Eun;Kim, Sol-A;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • In this study, we investigated the changes in both ambient temperature and microbial contamination of fresh convenience foods (FCFs) caused by the behavior of consumers after purchase. According to consumer survey results, it took 0.5 to 3 h put the purchased FCF in a home refrigerator or consume it. Only aerobic bacteria and Staphylococcus aureus (below maximum permitted limit) were detected in FCFs obtained from a local market. During storage of FCFs in a vehicle trunk for up to 3 h. the external and internal temperatures of FCFs were found to be 19 and 18.5℃ in spring, 44 and 42℃ in summer, 31.3 and 29.2℃ in autumn, and 17.6 and 16.8℃ in winter, respectively. Changes in contamination levels of aerobic bacteria on FCFs stored in a vehicle trunk for up to 3 hours are as follows: 2.72 → 3.41 log CFU/g in spring, 3.11 → 4.32 log CFU/g in summer, 3.08 → 3.81 log CFU/g in autumn, 2.71 → 3.36 log CFU/g in winter. S. aureus exceeding the tolerance was detected even when the FCFs were stored in a vehicle trunk for 1 h in summer and autumn and 2 h in spring and winter. Among three boxes (corrugated box, styrofoam box, and corrugated box coated with an aluminum film), the styrofoam box maintained the lowest temperature and showed the lowest growth rate of microorganisms on FCF after storage for 3 h in the vehicle trunk depending on whether ice was added. These results indicated that the possibility of food poisoning occurs when FCFs are exposed to the external environment. It is necessary to provide guidelines regarding storage temperature and allowable time for safe consumption of FCFs after purchase.

Quality Control of Tungsten-188/Rhenium-188 Generator (Tungsten-188/Rhenium-188 발생기의 정도관리)

  • Chang, Young-Soo;Jeong, Jae-Min;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.425-432
    • /
    • 1998
  • Purpose: For the purpose of using Re-188 as a therapeutic radionuclide, we performed the quality control of the W-188/Re-188 generator system. Materials and Methods: Several quality control tests of the Re-188 eluate from generator were carried out for about 300 days. After elution of Re-188 with normal saline (20 ml), chromatogram and gamma-ray spectrum of Re-188 eluate were obtained. The presence of aluminum which was derived from the alumina bed of the generator was detected by using aluminum ion indicator kit. Re-188 eluate was allowed to decay for several days, and then W-188 breakthrough in the Re-188 eluate was measured by detecting gamma-ray at 227 keY and 290 keV. The pH and the pyrogenicity of the eluate were checked. The Re-188 bolus was concentrated with ion exchange columns. Results: The radioactivity of Re-188 eluate from the generator was $67.4{\pm}7.0%$ of W-188 during 270 days, and it was highest at third day after previous elution. Radiochemical purity of Re-188 eluate obtained from chromatogram was higher than 99%. Gamma-ray spectrum of Re-188 eluate showed a peak at 155 keV. Aluminum ion and W-188 contamination were not detected. The PH of Re-188 eluate was 3 and the concentration yield was 85%. Conclusion: Our experiments and results on quality control tests of Re-188 eluate from W-188/Re-188 generator may be useful for setting W-188/Re-188 generator in hospitals.

  • PDF

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.

Current Status and Utilization Technology of End-of-Life Photovoltaic Modules (태양광 폐 모듈의 처리현황 및 실용화 기술)

  • Cho, Jai Young;Park, Areum;Yun, Hyun Mok;Jun, Yun-Su;Kim, Joon Soo
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2020
  • Recently, it is increasing a amount of installed solar-cell rapidly, and end-of-life photovoltaic(ELP) modules are generated in according to the reduction of cell efficiency largely. Recycling of ELP modules are begun at an advanced nation already, but there are bring about environmental contamination and resource recovery problems owing to not treated ELP modules because of economic cost completely. First of all, there were researched basic study for treatment conditions of used solar cell inspection, dismantling of aluminum frame, crushing / grinding & separation of tempered glass, removal of back sheet & EVA film, leaching & precipitation recovery of valuable metals and treatment of waste water. Therefore, we establish optimum conditions through carried out of designed apparatus, installation of equipment, test operation & trouble shooting in scale of 1ton/day pilot plant test. Following to economic review, it does have the economic efficiency until to the case of tempered glass recovery, but does not have the economic value in case of total processes until to recover the valuable metals. However, there are guaranteed economic value if we are gained a large amount of the expenses through EPR supported system. It was confirmed the commercialized possibility of ELP modules recycling if there were established on the collecting ELP modules, reusing criteria, economical technology, enactment of directives and enforcement of EPR supported system efficiently.

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Study of Factors Controlling Exposure Dose and Image Quality of C-arm in Operation Room according to Detector Size of It (Mainly L-Spine AP Study) (수술 중 C-Arm Neutral AP 검사 시 조절인자에 따른 피폭선량 및 화질비교(L-Spine AP검사를 기준으로))

  • CHOI, Sung-Hyun;JO, Hwang-Woo;Dong, Kyung-Rae;Chung, Woon-Kwan;Choi, Eun-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: Time of operation has been reduced and accuracy of operation has been improved since C-arm, which offer real-time image of patient, was introduced in operation room. However, because of the contamination of patient, C-arm could not be used more appropriately. Therefore, this study is to know factors of controlling exposure dose, image quality and the exposed dose of health professional in operation room. Materials and methods: Height of Wilson frame (bed for operation) was fixed at 130 cm. Then, Model 76-2 Phantom, which was set by assembling manual of Fluke Company, was set on the bed. Head/Spine Fluoroscopy AEC mode was set for exposure condition. According to detector size of C-arm, the absorbed dose per min was measured in the 7 steps OFD (cm) from 10 cm to 40 cm (10, 15, 20, 25, 30, 35, 40 cm). In each step of OFD, the absorbed dose per min of same diameter of collimation was measured. Moreover, using Nero MAX Model 8000, exposure dose per min was measured according to 3 step of distance from detector (20 cm, 60 cm, 100 cm). Finally, resolution was measured by CDRH Disc Phantom and magnification of each OFD was measured by aluminum stick bar. Result: According to detector size of C-arm, difference of absorbed dose shows that the dose of 20 cm OFD is 1.750 times higher than the dose of 40 cm OFD. It means that the C-arm, which has smaller size of detector, shows the bigger difference of absorbed dose per min (p<0.05). In the difference of absorbed dose in the same step of OFD (from 20 cm to 40 cm), the absorbed dose of 9 inch detect or C-arm was 1.370 times higher than 12 inch' s (p<0.05). When OFD was set to 20 cm OFD, the absorbed dose of non-collimation case was approximately 0.816 times lower than the absorbed dose of collimation cases (p<0.05). When the distance was 20 cm from detector, exposed does includes first-ray and scatter-ray. When the distance was 60 cm and 100 cm from detector, exposed does includes just scatter-ray. So, there was the 2.200 times difference of absorbed does. Finally, when OFD was increased, spatial resolution was 4 to 5 step was increased. However, low contrast resolution was not relative. Moreover, there was 1.363 times difference of magnification (p<0.05). Conclusion: When C-Arm is used, avoiding contamination of patient is more important factor than reducing exposed dose of health professional in operation room. Just controlling exposure time is just way to reduce the exposed does of workers. However, in the case, non-probability influence could be occurred. Therefore, this study proved that the exposed dose will be reduced if the factors such as using small detector size of C-arm, setting OFD from 20 cm to 25 cm and non-collimating. Moreover, dose management of C-arm in the non-interesting area will be considered additionally.