DOI QR코드

DOI QR Code

태양광 폐 모듈의 처리현황 및 실용화 기술

Current Status and Utilization Technology of End-of-Life Photovoltaic Modules

  • 조재영 (원광전력주식회사 기술연구소) ;
  • 박아름 (원광전력주식회사 기술연구소) ;
  • 윤현목 (원광전력주식회사 기술연구소) ;
  • 전연수 (원광전력주식회사 기술연구소) ;
  • 김준수 (원광전력주식회사 기술연구소)
  • Cho, Jai Young (Institute of Research and Development, Wongwang Electric Power Corporation) ;
  • Park, Areum (Institute of Research and Development, Wongwang Electric Power Corporation) ;
  • Yun, Hyun Mok (Institute of Research and Development, Wongwang Electric Power Corporation) ;
  • Jun, Yun-Su (Institute of Research and Development, Wongwang Electric Power Corporation) ;
  • Kim, Joon Soo (Institute of Research and Development, Wongwang Electric Power Corporation)
  • 투고 : 2020.07.02
  • 심사 : 2020.08.14
  • 발행 : 2020.08.28

초록

최근에 태양광 발전 시설이 급격히 증가됨에 따라 사용 후 태양광 모듈의 발생량이 급증할 것으로 예상된다. 태양광 폐 모듈의 리싸이클링은 일부 국가에서 시도하고 있지만, 경제성이 확보된 실용화 기술의 부재로 폐 모듈이 방치 및 폐기되어, 환경오염은 물론 유가자원 회수 측면에서도 많은 문제를 야기시키고 있으므로 대책 마련이 시급하다. 이와 같은 현실에 비추어 본 기술개발에서는 폐 모듈의 성능검사, 알루미늄 프레임 해체, 강화유리의 파분쇄 및 박리, back sheet 및 EVA의 분리 제거, 유가금속의 침출과 침전 회수 및 폐액 처리의 기반 기술을 확립한 다음, 이를 기초로 대단위 처리 시설을 설계 제작 및 운전함으로써 실용화기술을 확립하였다. 본 연구에서는 대단위 시험을 통하여 1 ton/day 규모의 폐 모듈 처리의 최적 조건을 확립한 다음, 얻어진 자료를 근거로 경제성 검토를 실시하였다. 프레임 해체 및 강화유리 박리 공정까지는 경제성이 있었으나, 유가금속 회수를 포함한 전체 공정을 포함하면 생산자 책임(EPR) 제도의 시행에 따른 재활용 분담금의 지원이 이루어지지 않는 한 경제성이 박약하였다. 향후 태양광 폐 모듈의 수거, 재사용 인증기준, 철거비 부담, 효율적인 처리 기술 확보, 관련 법규제정 및 EPR 제도 등의 문제가 해결된다면, 경제성 확보가 용이하여 상용화가 가능할 것이다.

Recently, it is increasing a amount of installed solar-cell rapidly, and end-of-life photovoltaic(ELP) modules are generated in according to the reduction of cell efficiency largely. Recycling of ELP modules are begun at an advanced nation already, but there are bring about environmental contamination and resource recovery problems owing to not treated ELP modules because of economic cost completely. First of all, there were researched basic study for treatment conditions of used solar cell inspection, dismantling of aluminum frame, crushing / grinding & separation of tempered glass, removal of back sheet & EVA film, leaching & precipitation recovery of valuable metals and treatment of waste water. Therefore, we establish optimum conditions through carried out of designed apparatus, installation of equipment, test operation & trouble shooting in scale of 1ton/day pilot plant test. Following to economic review, it does have the economic efficiency until to the case of tempered glass recovery, but does not have the economic value in case of total processes until to recover the valuable metals. However, there are guaranteed economic value if we are gained a large amount of the expenses through EPR supported system. It was confirmed the commercialized possibility of ELP modules recycling if there were established on the collecting ELP modules, reusing criteria, economical technology, enactment of directives and enforcement of EPR supported system efficiently.

키워드

참고문헌

  1. Kim, J.S., Cho, J.Y., Lee, J.K., et al., 2019 : Recycling of End-of Life Photovoltaic Silicon Modules, J.of Korean Inst. of Resoures Recycling, 28(5), pp.19-29.
  2. Jo, J. H., Seo, Y.W., Kim, Y.S., et al., 2018 : Management Status and Improvement Plans of Waste Solar panels, Korea Environment Institute, Research Report, pp.1-153.
  3. Bloomberg New Energy Finance (BNEF), 2018 : New Energy Outlook.
  4. Ministry of Trade, Industry and Energy (MOTIE), 2017 : Renewable Energy Plan 3020.
  5. International Renewable Energy Agency (IRENA) AND International Energy Agency (IEA), 2016 : End-of-Life Management: Solar Photovoltaic Panels.
  6. Kim, J. S., Cho, J.Y., Park, A.R., et al., 2020 : Development of Recycling Technology for PV Module Waste and Demonstration of Biz Model, Korean Electric Power Corporation Research Report, pp.1-362.
  7. Fraunhofer Institute for Solar Energy Systems, 2019 : Photovoltaics Report.
  8. Sica, D., Malandrino, O., Supino, S., et al., 2018 : Management of End-of-Life Photovoltaic panels as a step towards a circular Economy, Renewable and Sustainable Energy Reviews, 82(3), pp.2934-2945. https://doi.org/10.1016/j.rser.2017.10.039
  9. Korean Statistical Information Service (KOSIS), 2020 : http://kosis.kr.
  10. Ministry of Environment (ME) 2019 : Generation and Treatment Trend of Waste Photovoltaic Panel, Research Report.
  11. Dias, P., Javimczik, S., Benevit, M., et al., 2016 : Extraction and Concentration of Silver from Waste Crystalline Silicon Photovoltaic Modules, http://dx.doi.org./10.1016/j.wasman,2016.03.016,0956-053x/ (C)Elsvier Ltd., pp.1-6.
  12. Doi, T., Tsuda, I., Unagida, H., et al., 2001 : Experimental Study on PV module Recycling with Organic Solvent Method, Solar Energy Materials&Solar Cell, 67(2001), pp.397-403 https://doi.org/10.1016/S0927-0248(00)00308-1
  13. West, R.C., Astle, M.J., Beyer, W. H., et al., 1988 : CRC Handbook of Chemistry and Physics, CRC Press, Inc. Boca Raton, Florida, pp.B67-146
  14. JRC Technical Report, 2016 : Analysis of Material Recovering from Silicon Photovoltaic Panels, pp.1-71.
  15. Fthenakis, V. M., 2000 : End of Life Management and Recycling of PV Modules, Energy Policy, 28(2000), pp. 1051-1058. https://doi.org/10.1016/S0301-4215(00)00091-4
  16. Waste of Electrical and Electronic Equipment (WEEE) 2012 : Directive 2012/19/EU of the European Parliament and of the Council.
  17. Goe, M., Gaustad, G., 2014 : Strengthening the case for Recycling Photovoltaics : An Energy Payback Analysis, Applied Energy, 120(2014), pp.41-48. https://doi.org/10.1016/j.apenergy.2014.01.036