• Title/Summary/Keyword: Alumina slurry

Search Result 100, Processing Time 0.026 seconds

Rapid Tooling of Porous Ceramic Mold Using Slip Casting (슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작)

  • Chung, Sung-Il;Jeong, Du-Su;Im, Yong-Gwan;Jeong, Hae-Do;Cho, Kyu-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

Optimization of Alumina Tape Casting Process for Building Big Data (빅데이터 구축을 위한 알루미나 테이프 캐스팅 공정 최적화)

  • Kim, Dong Ha;Kim, Shi Yeon;Lee, Joo Sung;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.483-489
    • /
    • 2019
  • For machine learning techniques, a large amount of high-quality material property data should be accumulated. In this study, several data for an alumina tape casting process were produced with the variables of slurry viscosity, gap size, and coating speed. The alumina tapes were manufactured in the range of 1,000~6,000 cps for slurry viscosity, $300{\sim}1,000{\mu}m$ for gap size, and 0.5~2.0 m/min for coating speed. As a result, the lower the viscosity, coating speed, and gap size, the more pore-free tapes could be manufactured. The viscosity of the slurry limited the minimum thickness of the tape. Green sheets with high packing density were manufactured from the slurry of 100~6,000 cps slurry viscosity, coating speed of 0.5 m/min, and a $300{\sim}500{\mu}m$ gap size.

Methodological Study for Recycle of Chemical Mechanical Polishing Slurry (슬러리 Modification 에 대한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.567-568
    • /
    • 2006
  • To investigate the recycle possibility of slurry for the oxide-chemical mechanical polishing (oxide-CMP) application, three kinds of retreated methods were introduced as follows: First, the effects on the addition of silica abrasives and the diluted silica slurry (DSS) on CMP performances were investigated. Second, the characteristics of mixed abrasive slurry (MAS) using non-annealed and annealed alumina ($Al_2O_3$) powder as an abrasive added within DSS were evaluated to achieve the improvement of removal rates (RRs) and within-wafer non-uniformity (WIWNU%). Third, the oxide-CMP wastewater was examined in order to evaluate the possible ways of reusing it. And then, we have discussed the CMP characteristics of silica slurry retreated by mixing of original slurry and used slurry (MOS).

  • PDF

Dispersion and Rheological Characteristics of Alumina Slurries in Aqueous Tape-casting Using Acrylate Binder (Acrylate를 결합제로 사용한 수계 테이프 캐스팅에서 알루미나 슬러리의 분산 및 점성 특성)

  • Cho, Yu-Jeong;Park, Il-Seok;Moon, Joo-Ho;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Measurements of sedimentation, solid loading, zeta potential, and viscosity were employed to determine a proper dispersant and its amount for a well dispersed alumina powders in aqueous alumina tape casting using acrylate as a binder. Polycarboxylic acid was the most effective one among various dispersants considered in the present study and its amount was 0.23∼0.24 g per 100 g alumina for a dispersion. Better dispersion was obtained as an increase of dispersant addition. However, the dispersion was hindered as the amount of dispersant was higher than the optimum amount because of bridging or tangling of polymer chains. Excellent aqueous alumina tapes were prepared from the slurry containing the optimum amount of the polycarboxylic acid (0.2g), alumina powders(100 g), acrylate and Benzoflex as binder and plasticizer, respectively. The viscosity of the slurry was 570 cps and the alumina loading in the tape was 57 vol%.

Etching and Polishing Behavior of Cu thin film according to the additive chemicals

  • Ryu, Ju-Suk;Eom, Dae-Hong;Hong, Yi-Koan;Park, Jum-Yong;Park, Jin-Goo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.274-278
    • /
    • 2002
  • The purpose of this study was to characterize the reaction of Cu surface with Cu slurry and CMP performance as a function of additives in CMP slurry. The polish rate of Cu was dependent on the kind of organic acids added in slurry. It was considered that polish rate of Cu was dependent on the concentration of carboxylates and mean particle size. When the etchant and oxidant were added in slurry, the highest removal rate and lower etch rate were measured at neutral pH. The addition of etchant, oxidant and pH adjustor played key roles of CMP ability in slurry. As the pH increased, polish rate of Cu was increased by the enhanced the mechanical effects due to effective dispersion of slurry particles. Alumina abrasives was more desirable for 1st step slurry because of high removal rate of Cu and high selectivity ratio among TaN and Cu.

  • PDF

Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash (석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조)

  • Kim, Won-Young;Ji, Hyung-Bin;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

Effects of Oxidizer Additive on the Performance of Copper-Chemical Mechanical Polishing using Tungsten Slurry (텅스텐 슬러리를 사용한 Cu-CMP 특성에서 산화제 첨가의 영향)

  • 이우선;최권우;이영식;최연옥;오용택;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.156-161
    • /
    • 2004
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. In order to compare the removal rate and non-uniformity as a function of oxidizer contents, we used alumina-based tungsten slurry and copper blanket wafers deposited by DC sputtering method. According to the CMP removal rates and particle size distribution, and the microstructures of surface layer by SEM image as a function or oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_2$O$_3$abrasive particles in CMP slurry.

Evaluation of Al CMP Slurry based on Abrasives for Next Generation Metal Line Fabrication (연마제 특성에 따른 차세대 금속배선용 Al CMP (chemical mechanical planarization) 슬러리 평가)

  • Cha, Nam-Goo;Kang, Young-Jae;Kim, In-Kwon;Kim, Kyu-Chae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.731-738
    • /
    • 2006
  • It is seriously considered using Al CMP (chemical mechanical planarization) process for the next generation 45 nm Al wiring process. Al CMP is known that it has a possibility of reducing process time and steps comparing with conventional RIE (reactive ion etching) method. Also, it is more cost effective than Cu CMP and better electrical conductivity than W via process. In this study, we investigated 4 different kinds of slurries based on abrasives for reducing scratches which contributed to make defects in Al CMP. The abrasives used in this experiment were alumina, fumed silica, alkaline colloidal silica, and acidic colloidal silica. Al CMP process was conducted as functions of abrasive contents, $H_3PO_4$ contents and pressures to find out the optimized parameters and conditions. Al removal rates were slowed over 2 wt% of slurry contents in all types of slurries. The removal rates of alumina and fumed silica slurries were increased by phosphoric acid but acidic colloidal slurry was slightly increased at 2 vol% and soon decreased. The excessive addition of phosphoric acid affected the particle size distributions and increased scratches. Polishing pressure increased not only the removal rate but also the surface scratches. Acidic colloidal silica slurry showed the highest removal rate and the lowest roughness values among the 4 different slurry types.

Aging Effects of Silica Slurry and Oxide CMP Characteristics (실리카 슬러리의 에이징 효과 및 산화막 CMP 특성)

  • 이우선;고필주;이영식;서용진;홍광준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • CMP (Chemical Mechanical Polishing) technology for global planarization of multilevel interconnection structure has been widely studied for the next generation devices. Among the consumables for CMP process, especially, slurry and their chemical compositions play a very important role in the removal rates and within-wafer non-uniformity (WIWNU) for global planarization ability of CMP process. However, CMP slurries contain abrasive particles exceeding 1 ${\mu}{\textrm}{m}$ size, which can cause micro-scratch on the wafer surface after CMP process. Such a large size particle in these slurries may be caused by particle agglomeration in slurry supply-line. In this work, to investigate the effects of agglomeration on the performance of oxide CMP slurry, we have studied an aging effect of silica slurry as a function of particle size distribution and aging time during one month. We Prepared and compared the self-developed silica slurry by adding of alumina powders. Also, we have investigated the oxide CMP characteristics. As an experimental result, we could be obtained the relatively stable slurry characteristics comparable to aging effect of original silica slurry. Consequently, we can expect the saving of high-cost slurry.

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts (Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해)

  • Yoo, Dalsan;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2019
  • Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.