Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.483

Optimization of Alumina Tape Casting Process for Building Big Data  

Kim, Dong Ha (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Shi Yeon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Joo Sung (R & D Center, Boboo Hitech Co., Ltd.)
Yeo, Dong-Hun (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Shin, Hyo-Soon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Yoon, Sang-Ok (Department of Ceramic Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 483-489 More about this Journal
Abstract
For machine learning techniques, a large amount of high-quality material property data should be accumulated. In this study, several data for an alumina tape casting process were produced with the variables of slurry viscosity, gap size, and coating speed. The alumina tapes were manufactured in the range of 1,000~6,000 cps for slurry viscosity, $300{\sim}1,000{\mu}m$ for gap size, and 0.5~2.0 m/min for coating speed. As a result, the lower the viscosity, coating speed, and gap size, the more pore-free tapes could be manufactured. The viscosity of the slurry limited the minimum thickness of the tape. Green sheets with high packing density were manufactured from the slurry of 100~6,000 cps slurry viscosity, coating speed of 0.5 m/min, and a $300{\sim}500{\mu}m$ gap size.
Keywords
Big data; $Al_2O_3$; Tape casting; Slurry viscosity; Coating speed; Gap size; Packing density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature, 389, 939 (1997). [DOI: https://doi.org/10.1038/40087]   DOI
2 H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non-Cryst. Solids, 198, 165 (1996). [DOI: https://doi.org/10.1016/0022-3093(96)80019-6]   DOI
3 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: https://doi.org/10.1126/science.1083212]   DOI
4 T. J. Jo, D. H. Yeo, H. S. Shin, Y. W. Hong, and Y. S. Cho, Trans. Electr. Electron. Mater., 12, 32 (2011). [DOI: https://doi.org/10.4313/TEEM.2011.12.1.32]   DOI
5 T. J. Jo and D. H. Yeo, Trans. Electr. Electron. Mater., 13, 23 (2012). [DOI: https://doi.org/10.4313/TEEM.2012.13.1.23]   DOI
6 D. R. Larson, J. A. Coppola, D.P.H. Hasselman, and R. C. Bradt, J. Am. Ceram. Soc., 57, 417 (1974). [DOI: https://doi.org/10.1111/j.1151-2916.1974.tb11372.x]   DOI
7 D. S. Smith, S. Fayette, S. Grandjean, C. Martin, R. Telle, and T. Tonnessen, J. Am. Ceram. Soc., 86, 105 (2003). [DOI: https://doi.org/10.1111/j.1151-2916.2003.tb03285.x]   DOI
8 K. Ueno, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, and H. Takagi, Appl. Phys. Lett., 83, 1755 (2003). [DOI: https://doi.org/10.1063/1.1605806]   DOI
9 W. Cao and C. A. Randall, J. Phys. Chem. Solids, 57, 1499 (1996). [DOI: https://doi.org/10.1016/0022-3697(96)00019-4]   DOI
10 J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). [DOI: https://doi.org/10.1111/j.1551-2916.2006.01030.x]   DOI
11 J. Musil and M. Jirout, Surf. Coat. Technol., 201, 5148 (2007). [DOI: https://doi.org/10.1016/j.surfcoat.2006.07.020]   DOI
12 K. R. Mikeska and W. R. Cannon, Colloids Surf., 29, 305 (1988). [DOI: https://doi.org/10.1016/0166-6622(88)80125-2]   DOI
13 Y. Zeng, D. Jiang, and P. Greil, J. Eur. Ceram. Soc., 20, 1691 (2000). [DOI: https://doi.org/10.1016/s0955-2219(00)00043-1]   DOI
14 S. Y. Kim, D. H. Yeo, H. S. Shin, B. S. Kim, H. C. Kwon, and H. G. Yoon, Ceram. Int., 45, 17930 (2019). [DOI: https://doi.org/10.1016/j.ceramint.2019.06.010]   DOI
15 S. B. Kotsiantis, Informatica, 31, 249 (2007).
16 A.I.Y. Tok, F.Y.C. Boey, and Y. C. Lam, Mater. Sci. Eng., A, 280, 282 (2000). [DOI: https://doi.org/10.1016/s0921-5093(99)00691-7]   DOI