• Title/Summary/Keyword: Alumina and zirconia

Search Result 125, Processing Time 0.026 seconds

Osseointegration of zirconia implant in the tibia of pigs (돼지의 경골에 식립된 지르코니아 임플란트의 골유착에 관한 연구)

  • Kim, Lee-Kyoung;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • Purpose: The purposes of this study were to investigate osseointegration around zirconia implants which had machined or alumina sandblasted surface, and to compare the results with titanium implants. Materials and methods: The study was performed on the tibia of 6 pigs. Three types of implants were investigated: group T-titanium implant, group Z-machined zirconia implant, group ZS-alumina sandblasting treated zirconia implant. Zirconia implants were manufactured from yttria-stabilized tetragonal zirconia polycrystalline (Acucera Inc., Pocheon, Korea). A total of 36 implants were installed in pigs' tibias. After 1, 4 and 12 weeks of healing period, the periotest and the histomorphometric analysis were performed. The data were analyzed using one-way ANOVA and significance was assessed by the Scheffe test (${\alpha}=.05$). Results: In the measurement of surface roughness, highest Ra value was measured in group T with significant difference. No significant differences were found among groups regarding Periotest values. After 1 week, in comparison of bone to implant contact (BIC), group Z showed higher value with significant difference. In comparison of bone area (BA), group T and group Z showed higher value with significant difference than group ZS. After 4 weeks, in comparison of BIC, group T showed higher value with significant difference. Comparison of BA showed no significant difference among each implant. After 12 weeks, the highest mean BIC values were found in group T with significant difference. Group ZS showed higher BIC value with significant difference than group Z. In comparison of BA, group T and group ZS showed higher value with significant difference than group Z. Conclusion: Zirconia implant showed low levels of osseointegration in this experiment. Modification of surface structure should be taken into consideration in designing zirconia implants to improve the success rate.

Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions (50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석)

  • Kim, Jung-Hwan;Yoon, Sae-Jung;Hahn, Byung-Dong;Ahn, Cheol-Woo;Yoon, Woon-Ha;Choi, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

Adhesion Characteristics of Polymers and Ceramic Surface Coated on Metal by Plasma Spray (플라즈마 용사법에 의한 금속면에 세라믹 코팅된 표면과 범용고분자와의 접착특성)

  • Lee, Gyeong-Hui;Gwon, Sun-Hun;Jo, Won-Je;Ha, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.724-734
    • /
    • 1999
  • The adhesion characteristics of the thermoplastic resins such as PE, PP PVC, PET and PS were investigated on the surfaces of conventional steel (SS41), steel (SS41P) treated with ultrasonic waves and the SS41P coated with several ceramic powders (SS41PC) by the plasma spray. Alumina (Al$_2$O$_3$), alumina titania (Al$_2$O$_3$95%, TiO$_2$ 5%) and zirconia yttria (ZrO$_2$ 95%, $Y_2$O$_3$5% ) were used for the materials plasma spray The morphologies, surface hardness, surface roughness, and contact angles on SS41, SS41P, and SS41PC were examined. The tensile shear strength and peel strength of the polymers which were attached to the surfaces of ceramics coated on SS41P also were measured. The tensile shear strength and peel strength of polymers adhered to ceramic surface coated on steel were found to be stronger than those of conventional steel. The tensile shear strength and peel strength of the polymers adhered on the surfaces of ceramics coated steel increased in the following order PE > PET > PP > PS > PVC. The high adhesion strength of PE may be attributed to the surface roughness and its anchor effect on the ceramic surface.

  • PDF

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF

Optimization of powder compaction parameters for the pressureless sintered ZTA (상압소결 ZTA의 분말 성형 공정 최적화)

  • 신동우;김경도;박삼식;임창성;이수완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.356-364
    • /
    • 1998
  • The dependence of green and sintered densities of Zirconia-Toughened Alumina ($ZTA:\;Al_2O_3/\;15\;vol{%}\;ZrO_2$) on the properties of spray-dried granules was studied thoroughly to establish the optimum compaction condition leading to high reproducibility in the light of sintered density. The sphericity, mean size, degree of hollow occurrence and moisture content of spray-dried granules were largely different in between the granule containing binder and the ones with no binder. The effect of these differences in the characteristic of granules on the compaction behavior was examined in terms of the compaction pressure from 80 MPa to 120 MPa 10 MPa increment and the compaction method, i.e., uniaxial and cold isostatic pressing. This work confirmed that the reproducibility of sintered density caused by the variation of granule property could be improved by the optimization of compaction process. The variation of sintered density was controlled within 1 % deviation by compacting the granules under a relatively low pressure of 80 MPa in an uniaxial forming and subsequent cold isostatic pressing at high pressure of 500 MPa.

  • PDF

In-vitro Hertzian Fatigue Behavior of Zirconia/Alumina Composites (지르코니아/알루미나 복합체의 In-vitro Hertzian 피로거동)

  • Lee, Deuk-Yong;Park, Il-Seok;Kim, Dae-Joon;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • The degree of the indentation damage and strength degradation for 3Y-TZP ceramics and (Y,Nb)-TZP/$Al_2O_3$ dental implant composites was investigated under the Hertzian cyclic fatigue. Fatigue tests were conducted at contact loads of 500 to 3000 N and up to $10^6$ cycles in exact in vitro environments. At 500 N, no strength degradation and crack generation was observed up to $5{\times}10^5$ contact cycles. Fatigue properties of 3Y-TZP ceramics was superior to (Y,Nb)-TZP/ㅍ composites due to stress relief caused by the phase transformation from tettagonal to monoclinic phase. As contact load increased, the drastic reduction in strength was found when the damage transition from ring to radial crack occurred. The extent of strength degradation was more pronounced in vitro environments probably due to chemical corrosion of artificial saliva through cracks introduced during large numbers of contacts.

Influence of sandblasting and primer on shear bond strength of resin cement to zirconia (샌드블라스팅과 프라이머가 지르코니아와 레진시멘트의 전단결합강도에 미치는 영향)

  • Lee, Jung-Haeng;Kim, Hyeong-Seob;Pae, Ah-Ran;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: The aim of this study was to evaluate the effect of mechanical, chemical surface treatments on the zirconia-to-resin cement shear bond strength (SBS). Materials and methods: Eighty zirconia discs (Lava, 3M ESPE) and eighty zirconia/alumina composite (Zirace, Acucera) were embedded in an epoxy resin base. Zirconia discs were randomly divided in to four treatment groups(10 for each manufacturer): $50\;{\mu}m$ $Al_2O_3$ sandblasting (S50), $110\;{\mu}m$ $Al_2O_3$ sandblasting (S110), $50\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus, Bisco Inc) (S50z) and $110\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus) (S110z). Two resin-based luting cements (Calibra, Panavia F) were used to build 2 mm diameter cylinders onto the zirconia. After 24 h of storage in water, SBS testing was evaluate using a universal testing machine. Bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and post hoc comparison was done using Tukey test (${\alpha}$ = .05). Results: Groups using primer showed the high shear bond strength. The groups that did not use primer presented lower shear bond strengths. Conclusion: The use of primer (Z-Prime Plus, Bisco) had significantly higher shear bond strengths.

Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics (알루미나-TZP(3Y) 세라믹스 복합체의 제조 및 기계적 특성)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.170-174
    • /
    • 2015
  • Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

Preparation of Sintered ATZ by Sol-Gel Process and Properties (졸-겔법에 의한 알루미나 강화 지르코니아 소결체의 제조 및 특성)

  • Han, Kyoung Ran;Park, Sun Jin;Hong, Kug-Sun;Jun, Hyung Woo
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.225-229
    • /
    • 1993
  • ATZ was prepared by adding an alumina sol equivalent to 2wt% as $Al_2O_3$ to an aqueous slurry of alumina (AKP-30) and zirconia (TZ-2Y or TZ-0Y) in the range of 10-30ATZ, followed by gelation, calcination, and sintereing between $1450^{\circ}C{\sim}1550^{\circ}C$ for 2h. They showed excellent microstructure with alumina grains of <$0.5{\mu}m$ and>99% of the theoretical density. Fracture toughness of ${\sim}8MPa{\cdot}m^{1/2}$ was observed around 20ATZ which was higher than $6MPa{\cdot}m^{1/2}$ obtainable by ball-milling.

  • PDF