Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.3.170

Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics  

Yoon, Jea-Jung (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology)
Chun, Myoung-Pyo (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology)
Nahm, San (Materials Science and Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.3, 2015 , pp. 170-174 More about this Journal
Abstract
Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.
Keywords
Fracture toughness; Vicker's hardness; Microstructure; Composite ceramics; $ZrO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Claussen, J. Am. Ceram. Soc., 59, 51 (1976).   DOI
2 W. C. Moffatt and H. K. Bowen, J. Mater. Sci., 24, 3984 (1989).   DOI
3 K. H. Hwang and H. Kim, J. Kor. Ceram. Soc., 25, 230 (1988).
4 M.M.R. Boutz, A.J.A. Winnubst, B. Van. Langerak, R.J. M. Olde Scholtenhuis, K. Kreuwel, and A. J. Burggraaf, J. Mater. Sci., 30, 1854 (1995).   DOI
5 T. K. Gupta, F. F. Lange, and J. H. Bechtold, J. Mater. Sci., 13, 1464 (1978).   DOI
6 F. Golestani-fard, M. Mazaheri, M. Aminzare, and T. Ebadza-deh, J. Eur. Ceram. Soc., 31, 2593 (2011).   DOI
7 N. Claussen, J. Am. Ceram. Soc., 61, 85 (1978).   DOI
8 Y. S. Choi and Y. H. Kim, J. Kor. Ceram. Soc., 28, 400 (1991).
9 J. H Lee and H. C. Park, J. Kor. Ceram. Soc., 33, 1185 (1966).
10 Y. G. Jung and S. C. Choi, J. Kor. Ceram. Soc., 35, 436 (1988).
11 K. Tsukuma, Am. Ceram. Soc., 65, 1396 (1986).
12 S. R. Witek and E. P. Butter, J. Am. Ceram. Soc., 69, 529 (1986).
13 T. W. Coyle and W. S. Coblenz, J. Am. Ceram. Soc., 71, 88 (1989).
14 B. B. Vleugels, J. Mater. Sci., 380, 215 (2004).   DOI
15 B. R. Cho, J. H. Chae, B. L. Kim, and J. B. Kang, Mater. Sci. Forum, 724, 254 (2012).
16 W. J. Nellis and J. D. Katz, J. Mater. Sci., 11, 114 (1996).