• Title/Summary/Keyword: Alumina Ceramic

Search Result 882, Processing Time 0.026 seconds

Characteristics of perovskite-structure Sr(Ti1-xFex)O3 thick film gas sensors (페롭스카이트 구조 Sr(Ti1-xFex)O3 후막 가스센서의 특성)

  • Jin, Guang-Hu;Lee, Woon-Young;Lee, Hyun-Gyu;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.456-461
    • /
    • 2009
  • Perovskite-structure $Sr(Ti_{1-x}Fe_x)O_3$ thick films, in which x is 0.4 or 0.6, were prepared by normal ceramic process on alumina substrate. Electrical resistance was measured as a function of thermal treatment condition including atmosphere, time, and temperature. The resistance of $Sr(Ti_{1-x}Fe_x)O_3$ films is lower than those of $SrTiO_3$ or $SrFeO_3$ films. The temperature coefficient of resistance over $550^{\circ}C$ was measured to be 0 for the $Sr(Ti_{1-x}Fe_x)O_3$ films after thermal treatment at $1100^{\circ}C$ in air. The sensing property of the films was also measured as a function of temperature and gas such as $O_2$, CO, $CO_2$, NO and $NO_2$. $Sr(Ti_{1-x}Fe_x)O_3$ films showed a good sensing property for $O_2$, but no sensing signal for CO, $CO_2$, NO and $NO_2$.

Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique (전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구)

  • Shin, Sung-Chul;Kim, Ji-Won;Kwon, Se-Hun;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

Effects of Sputtering Condition on Structural Properties of PZT Thin Films on LTCC Substrate by RF Magnetron Sputtering (저온동시소성세라믹 기판 위에 제작된 PZT 박막의 증착조건이 박막의 구조적 특성에 미치는 영향)

  • Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Hur, Won-Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of sputtering gas ratio and annealing temperature on the crystal structure of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrate with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Pt / Ti / LTCC substrates by RF magnetron sputtering method. The results showed that the crystallization of the films were enhanced as increasing $O_2$ mixing ratio. At about 25% $O_2$ mixing ratio, was well crystallized in the perovskite structure. PZT thin films was annealed at various temperatures. When the annealing temperature is lower, the PZT thin films become a phyrochlore phase. However, when the annealing temperature is higher than $600^{\circ}C$, the PZT thin films become a perovskite phase. At the annealing temperature of $700^{\circ}C$, perovskite PZT thin films with good quality structure was obtained.

Performance Evaluation of Dicing Sawing of High-densified Al2O3 Bulk using Diamond Electroplated Band-saw Machine (다이아몬드전착 밴드쏘우장비를 이용한 고치밀도 알루미나소결체의 다이싱가공 성능평가)

  • Lee, Yong-Moon;Park, Young-Chan;Kim, Dong-Hyun;Lee, Man-Young;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2017
  • Recently, the brittle materials such as ceramics, glass, sapphire and textile material have been widely used in semiconductors, aerospace and automobile owing to high functional characteristics. On the other hand, it has the characteristics of difficult-to-cut material relative to all materials. In this study, diamond electro-deposited band-saw machine was developed to operate stably using water-coolant type through relative motion between band-saw tool and $Al_2O_3$ material. High densified $Al_2O_3$ material was manufactured by spark plasma sintering method. The bulk density was observed by the Archimedes law and the theoretical density was estimated to be $3.88g/cm^3$ and its hardness 14.7 MPa. From the dicing sawing test of $Al_2O_3$ specimen, behavior of surface roughness and band-saw wear are dominantly affected by the increase of the band-saw linear velocity. Additionally, an continuous pattern type of diamond band-saw was a very effective due to entry impact as a one-off for brittle material.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

Variation in adhesion of Streptococcus mutans and Porphyromonas gingivalis in saliva-derived biofilms on raw materials of orthodontic brackets

  • Park, So-Hyun;Kim, Kyungsun;Cho, Soha;Chung, Dong-Hwa;Ahn, Sug-Joon
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.278-286
    • /
    • 2022
  • Objective: To evaluate differences in the adhesion levels of the most common oral pathogens, Streptococcus mutans and Porphyromonas gingivalis, in human saliva-derived microcosm biofilms with respect to time and raw materials of orthodontic brackets. Methods: The samples were classified into three groups of bracket materials: 1) monocrystalline alumina ceramic (CR), 2) stainless steel metal (SS), and 3) polycarbonate plastic (PL), and a hydroxyapatite (HA) group was used to mimic the enamel surface. Saliva was collected from a healthy donor, and saliva-derived biofilms were grown on each sample. A real-time polymerase chain reaction was performed to quantitatively evaluate differences in the attachment levels of total bacteria, S. mutans and P. gingivalis at days 1 and 4. Results: Adhesion of S. mutans and P. gingivalis to CR and HA was higher than the other bracket materials (SS = PL < CR = HA). Total bacteria demonstrated higher adhesion to HA than to bracket materials, but no significant differences in adhesion were observed among the bracket materials (CR = SS = PL < HA). From days 1 to 4, the adhesion of P. gingivalis decreased, while that of S. mutans and total bacteria increased, regardless of material type. Conclusions: The higher adhesion of oral pathogens, such as S. mutans and P. gingivalis to CR suggests that the use of CR brackets possibly facilitates gingival inflammation and enamel decalcification during orthodontic treatment.

Characterization of Ceramic Membranes by Gas-Liquid Displacement Porometer and Liquid-Liquid Displacement Porometer (Gas-Liquid Displacement Porometer와 Liquid-Liquid Displacement Porometer를 이용한 세라믹 분리막 특성 분석)

  • Kim, Yeo-Jin;Kim, Seong-Joong;Kim, Jeong;Jo, Yeong-Hoon;Park, Hosik;Lee, Pyung-Soo;Park, You-In;Park, Ho-Bum;Nam, Seung-Eun
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • There are several different methods to characterize membrane pore size distribution, however, it is yet difficult to accurately measure pore size range of 10-50 nm. In this work, we employed gas-liquid displacement porometer (GLDP) and liquid-liquid displacement porometer (LLDP) to characterize in-house alumina hollow fiber membrane (K-100) and commercial membranes (A-100, A-20) that exhibit pore sizes between 10-100 nm. GLDP method was more suitable for measuring the maximum pore size, and the measured mean pore size of the membranes by LLDP were better correlated with water permeability and solute rejection. It was determined that LLDP is effective for measuring pore sizes between 10-50 nm; however, the method holds intrinsic disadvantages such as low precision and high sensitivity compared to that of GLDP. Nevertheless, it is expected that the recently commercialized LLDP technique can provide useful data that other methods cannot.

Development of Wastewater Treatment and Recycle Technology Using a Tubular Ceramic Ultrafiltration Membrane 1, Effect of Periodic Backflushing (관형 세라믹 한외여과막을 사용한 폐수처리 및 재활용기술개발 : 1, 주기적 역세척 효과)

  • 박진용
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 1999
  • A periodic backflushing was performed to reduce the membrane fouling of ultrafiltration for wastewater, and the effect and the optimum condition were investigated in this study. The alumina¬ceramic tubular membrane with pore size of 0.02${\mu}m$ was used for the wastewater treated by coagulation and sedimentation from two paper plants, of which A plant made toilet paper by recycling milk paper cartons and B plant recycled corrugated cardboards. And the effect of periodic backflushing to membrane fouling and quality of permeate were studied with a constant backflushing time of 3 sec. As results of measuring SS, TDS, and COD of source and permeate, the rejection rate of SS showed the highest value at the backflushing period of 15 see, which was the shortest time in these experiments, in case of waste¬water discharged from A plant. However, the rejection rate of COD had the highest value at the period of 30 sec for wastewater from both A and B plant. Then, the rejection rate of TDS was almost same at 30 and 60 sec for A plant wastewater, and the highest at 60 see for B plant. The effect of periodic back¬flushing to membrane fouling was investigated by change of permeate flux according to operating time. The permeate flux decreased slowly at the operation with backflushing, and was higher compared with that without backflushing in both case of A and B wastewater. But, the optimum period with the highest flux of A wastewater was different from that of B, because SS and COD of A was higher than those of Band TDS of B was higher than that of A.

  • PDF

Fabrication of Al2O3/ZrO2Ceramics by the Polymerization Dispersion Process (ZrO2의 고분자화 분산법을 이용한 Al2O3/ZrO2요업체의 제조)

  • Cho, Myung-Je;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.284-288
    • /
    • 2004
  • To improve mechanical properties of $Al_2$O$_3$/ZrO$_2$composites have been controlled dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ ceramics by polymeric precursor method (Pechini process). In case of coprecipitation or mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So the polyesterization process of Zr/Y(NO$_3$)$_3$-citric acid solution in ethylene glycol with the commercial sub-micron sized o(-alumina powder (Sumitomo AES-11(0.4 ${\mu}{\textrm}{m}$)) was adopted in order to obtain homogeneous dispersion of ZrO$_2$ in A1203. By this partial polyesterization process, the homogeneous dispersion of relatively low sized ZrO$_2$in $Al_2$O$_3$/ZrO$_2$composites was achieved at 1450∼1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Strengthening of Fiber-Reinforced $\gamma$-LiAlO$_2$ Matrixes for Molten Carbonate Fuel Cell by Laminatin (용융탄산염 연료전지용 화이버 강화 $\gamma$-LiAlO$_2$ 매트릭스의 적층에 의한 강도 증진)

  • 현상훈;조성철;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 1999
  • Microstructural variation and strengthening effects with lamination methods of alumina fiber-reinforced ${\gamma}$-LiAlO2 matrixes for Molten Carbonate Fuel Cell(MCFC) were studied. The porosities of all matrix laminated by hot-pressing of two green sheets under 1 kg/$\textrm{cm}^2$ at 45$^{\circ}C$ for 1 min and by double-casting which the second layer cast on the first green sheet dried for 3.5h were more than 50%. The strength of the Al2O3 fiber-reinforced matrix prepared by lamination was enhanced by 70% in comparison with the non-laminated matrix (115 gf/$\textrm{mm}^2$) and the strength-directionality due to fiber-orientation also could be removed. The strength of matrixes laminated by triple-casting was higher than that of the double-cast matrix, but triple-cast matrix showed the directionality with the casting direction, and furthermore its porosity was less than 50%. Although the strength of matrixes laminated by double-casting (195 gf/$\textrm{mm}^2$) is slightly less than that of matrixes laminated by hot-pressing (212 gf/$\textrm{mm}^2$), the double-casting method was evaluated to be more efficient laminating process in MCFC matrix processing.

  • PDF