Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.263

Characterization of Ceramic Membranes by Gas-Liquid Displacement Porometer and Liquid-Liquid Displacement Porometer  

Kim, Yeo-Jin (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Kim, Seong-Joong (University of Science & Technology (UST))
Kim, Jeong (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Jo, Yeong-Hoon (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Park, Hosik (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Lee, Pyung-Soo (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Park, You-In (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Park, Ho-Bum (Department of Energy Engineering, Hanyang University)
Nam, Seung-Eun (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Membrane Journal / v.27, no.3, 2017 , pp. 263-272 More about this Journal
Abstract
There are several different methods to characterize membrane pore size distribution, however, it is yet difficult to accurately measure pore size range of 10-50 nm. In this work, we employed gas-liquid displacement porometer (GLDP) and liquid-liquid displacement porometer (LLDP) to characterize in-house alumina hollow fiber membrane (K-100) and commercial membranes (A-100, A-20) that exhibit pore sizes between 10-100 nm. GLDP method was more suitable for measuring the maximum pore size, and the measured mean pore size of the membranes by LLDP were better correlated with water permeability and solute rejection. It was determined that LLDP is effective for measuring pore sizes between 10-50 nm; however, the method holds intrinsic disadvantages such as low precision and high sensitivity compared to that of GLDP. Nevertheless, it is expected that the recently commercialized LLDP technique can provide useful data that other methods cannot.
Keywords
pore size; pore size distribution; gas-liquid displacement porometer (GLDP); liquid-liquid displacement porometer (LLDP); ceramic hollow fiber membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Li, Y. Ma, H. Li, and G. Peng, "A convenient method for the determination of molecular weight cut-off of ultrafiltration membranes", Chinese Journal of Chemical Engineering, 25, 62 (2017).   DOI
2 J. Ren, Z. Li, and F.-S. Wong, "A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes", J. Membr. Sci., 279, 558 (2006).   DOI
3 S. R. Wickramasinghe, S. E. Bower, Z. Chen, A. Mukherjee, and S. M. Husson, "Relating the pore size distribution of ultrafiltration membranes to dextran rejection", J. Membr. Sci., 340, 1 (2009).   DOI
4 P. Shao, R. Y. M. Huang, X. Feng, and W. Anderson, "Gas liquid displacement method for estimating membrane pore‐size distributions", AIChE Journal, 50, 557 (2004).   DOI
5 K. Y. Wang, T.-S. Chung, and M. Gryta, "Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation", Chemical Engineering Science, 63, 2587 (2008).   DOI
6 M. M. Teoh and T.-S. Chung, "Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes", Separation and Purification Technology, 66, 229 (2009).   DOI
7 A. Hernandez, J. I. Calvo, P. Pradanos, and F. Tejerina, "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method", J. Membr. Sci., 112, 1 (1996).   DOI
8 J. M. Sanz, R. Peinador, J. I. Calvo, A. Hernandez, A. Bottino, and G. Capannelli, "Characterization of UF membranes by liquid-liquid displacement porosimetry", Desalination, 245, 546 (2009).   DOI
9 R. I. Peinador, J. I. Calvo, P. Pradanos, L. Palacio, and A. Hernandez, "Characterisation of polymeric UF membranes by liquid-liquid displacement porosimetry", J. Membr. Sci., 348, 238 (2010).   DOI
10 J. I. Calvo, R. I. Peinador, P. Pradanos, L. Palacio, A. Bottino, G. Capannelli, and A. Hernandez, "Liquid-liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes", Desalination, 268, 174 (2011).   DOI
11 J. I. Calvo, A. Bottino, G. Capannelli, and A. Hernandez, "Pore size distribution of ceramic UF membranes by liquid-liquid displacement porosimetry", J. Membr. Sci., 310, 531 (2008).   DOI
12 R. I. Peinador, J. I. Calvo, K. ToVinh, V. Thom, P. Pradanos, and A. Hernandez, "Liquid-liquid displacement porosimetry for the characterization of virus retentive membranes", J. Membr. Sci., 372, 366 (2011).   DOI
13 C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, and P. Simon, "Relation between the ion size and pore size for an electric double-layer capacitor", Journal of the American Chemical Society, 130, 2730 (2008).   DOI
14 K. Raj and B. Viswanathan, "Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile", Indian Journal of Chemistry, 48A, 1378 (2009).
15 F. P. Cuperus, D. Bargeman, and C. A. Smolders, "Permporometry: the determination of the size distribution of active pores in UF membranes", J. Membr. Sci., 71, 57 (1992).   DOI
16 B. Bafarawa, A. Nepryahin, L. Ji, E. M. Holt, J. Wang, and S. P. Rigby, "Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids", Journal of Colloid and Interface Science, 426, 72 (2014).   DOI
17 G. Z. Cao, J. Meijernik, H. W. Brinkman, and A. J. Burggraaf, "Permporometry study on the size distribution of active pores in porous ceramic membranes", J. Membr. Sci., 83, 221 (1993).   DOI
18 T. Tsuru, T. Hino, T. Yoshioka, and M. Asaeda, "Permporometry characterization of microporous ceramic membranes", J. Membr. Sci., 186, 257 (2001).   DOI
19 T. Tsuru, Y. Takata, H. Kondo, F. Hirano, T. Yoshioka, and M. Asaeda, "Characterization of sol-gel derived membranes and zeolite membranes by nanopermporometry", Separation and Purification Technology, 32, 23 (2003).   DOI
20 A. Leenaars, K. Keizer, and A. Burggraaf, "The preparation and characterization of alumina membranes with ultra-fine pores", Journal of Materials Science, 19, 1077 (1984).   DOI
21 Y. S. Lin and A. J. Burggraaf, "Experimental studies on pore size change of porous ceramic membranes after modification", J. Membr. Sci., 79, 65 (1993).   DOI
22 I. P. Mardilovich, E. Engwall, and Y. H. Ma, "Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes", Desalination, 144, 85 (2002).   DOI
23 A. Zhang, Q. Zhang, H. Bai, L. Li, and J. Li, "Polymeric nanoporous materials fabricated with supercritical $CO_2$ and $CO_2$-expanded liquids", Chemical Society Reviews, 43, 6938 (2014).   DOI
24 A. Jena and K. Gupta, "Liquid extrusion techniques for pore structure evaluation of nonwovens", International Nonwovens Journal, 12, 45 (2003).
25 D. Wang, K. Li, and W. K. Teo, "Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive", J. Membr. Sci., 176, 147 (2000).   DOI
26 E. M. Yang, H. R. Lee, and C. H. Cho, "Effect of precursor alumina particle size on pore structure and gas permeation properties of tubular a-alumina support prepared by slip casting process", Membr. J., 26, 372 (2016).   DOI
27 M. Mulder, "Basic Principles of Membrane Technology", Second ed., Kluwer Academic Publishers (1996).
28 J. I. Calvo, A. Hernandez, P. Pradanos, L. Martinez, and W. R. Bowen, "Pore size distributions in microporous membranes II. bulk characterization of track-etched filters by air porometry and mercury porosimetry", Journal of Colloid and Interface Science, 176, 467 (1995).   DOI
29 M. Kruk, M. Jaroniec, and A. Sayari, "Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements", Langmuir, 13, 6267 (1997).   DOI
30 F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, and S. Qiu, "Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica", Microporous and Mesoporous Materials, 92, 1 (2006).   DOI
31 B. R. Jeong, D. W. Lee, J. Y. Park, J. Y. Kwon, K. H. Lee, and I. Ch. Kim, "Preparation of metal/ ceramic composite ultrafiltration hollow fiber membranes", Membr. J., 19, 47 (2009).
32 M. C. Shin, Y. C. Choi, and J. H. Park, "Development of ceramic membrane for metal ion separation of lignin extract from pulp process", Membr. J., 27, 199 (2017).   DOI
33 J. I. Calvo, A. Bottino, G. Capannelli, and A. Hernandez, "Comparison of liquid-liquid displacement porosimetry and scanning electron microscopy image analysis to characterise ultrafiltration track-etched membranes", J. Membr. Sci., 239, 189 (2004).   DOI
34 J. I. Calvo, P. Pradanos, A. Hernandez, W. R. Bowen, N. Hilal, R. W. Lovitt, and P. M. Williams, "Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques", J. Membr. Sci., 128, 7 (1997).   DOI
35 R. Ziel, A. Haus, and A. Tulke, "Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis", J. Membr. Sci., 323, 241 (2008).   DOI
36 F. H. She, K. L. Tung, and L. X. Kong, "Calculation of effective pore diameters in porous filtration membranes with image analysis", Robotics and Computer-Integrated Manufacturing, 24, 427 (2008).   DOI
37 P. Elia, E. Nativ-Roth, Y. Zeiri, and Z.e. Porat, "Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs", Microporous and Mesoporous Materials, 225, 465 (2016).   DOI
38 W. Richard Bowen and T. A. Doneva, "Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion", Desalination, 129, 163 (2000).   DOI
39 N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, "Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes", J. Membr. Sci., 187, 227 (2001).   DOI
40 N. Hilal, H. Al-Zoubi, N. A. Darwish, and A. W. Mohammad, "Characterisation of nanofiltration membranes using atomic force microscopy", Desalination, 177, 187 (2005).   DOI
41 T. N. Shah, H. C. Foley, and A. L. Zydney, "Development and characterization of nanoporous carbon membranes for protein ultrafiltration", J. Membr. Sci., 295, 40 (2007).   DOI