DOI QR코드

DOI QR Code

Characterization of Ceramic Membranes by Gas-Liquid Displacement Porometer and Liquid-Liquid Displacement Porometer

Gas-Liquid Displacement Porometer와 Liquid-Liquid Displacement Porometer를 이용한 세라믹 분리막 특성 분석

  • Kim, Yeo-Jin (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Seong-Joong (University of Science & Technology (UST)) ;
  • Kim, Jeong (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jo, Yeong-Hoon (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Hosik (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Pyung-Soo (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, You-In (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Ho-Bum (Department of Energy Engineering, Hanyang University) ;
  • Nam, Seung-Eun (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 김여진 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김성중 (과학기술연합대학원대학교) ;
  • 김정 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 조영훈 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박호식 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 이평수 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박유인 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 박호범 (한양대학교 에너지공학과) ;
  • 남승은 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Received : 2017.06.23
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

There are several different methods to characterize membrane pore size distribution, however, it is yet difficult to accurately measure pore size range of 10-50 nm. In this work, we employed gas-liquid displacement porometer (GLDP) and liquid-liquid displacement porometer (LLDP) to characterize in-house alumina hollow fiber membrane (K-100) and commercial membranes (A-100, A-20) that exhibit pore sizes between 10-100 nm. GLDP method was more suitable for measuring the maximum pore size, and the measured mean pore size of the membranes by LLDP were better correlated with water permeability and solute rejection. It was determined that LLDP is effective for measuring pore sizes between 10-50 nm; however, the method holds intrinsic disadvantages such as low precision and high sensitivity compared to that of GLDP. Nevertheless, it is expected that the recently commercialized LLDP technique can provide useful data that other methods cannot.

분리막의 기공 크기 및 분포도를 분석하기 위한 다양한 측정법이 있지만 10-50 nm 범위의 한외여과막 기공크기를 정확하게 측정하기가 까다롭다. 따라서 gas-liquid displacement porometer (GLDP)와 liquid-liquid displacement porometer(LLDP) 기공 특성 측정법 두 가지를 이용하여, 10-100 nm의 기공크기를 갖는 세 종류의 세라믹 분리막(K-100, A-100, A-20)의 기공 크기 및 분포도를 비교 분석하였다. GLDP는 한외여과막의 최대 기공크기를 측정하는데 적합한 분석법으로 확인되었고, LLDP로 측정된 평균 기공크기가 분리막의 분리 성능 결과와 더 연계되어 있었다. 또한 LLDP는 10-50 nm 범위의 기공크기를 측정하는데 적합한 기공 분석법으로 확인되었으나, GLDP 보다 낮은 정밀도와 높은 민감도를 나타내었다. 다양한 기공 특성 분석법 가운데, 최근 상용화된 LLDP 기술은 종래의 측정법으로 알지 못했던 유용한 결과들을 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. M. Mulder, "Basic Principles of Membrane Technology", Second ed., Kluwer Academic Publishers (1996).
  2. J. I. Calvo, A. Hernandez, P. Pradanos, L. Martinez, and W. R. Bowen, "Pore size distributions in microporous membranes II. bulk characterization of track-etched filters by air porometry and mercury porosimetry", Journal of Colloid and Interface Science, 176, 467 (1995). https://doi.org/10.1006/jcis.1995.9944
  3. M. Kruk, M. Jaroniec, and A. Sayari, "Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements", Langmuir, 13, 6267 (1997). https://doi.org/10.1021/la970776m
  4. F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, and S. Qiu, "Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica", Microporous and Mesoporous Materials, 92, 1 (2006). https://doi.org/10.1016/j.micromeso.2005.12.004
  5. E. M. Yang, H. R. Lee, and C. H. Cho, "Effect of precursor alumina particle size on pore structure and gas permeation properties of tubular a-alumina support prepared by slip casting process", Membr. J., 26, 372 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.372
  6. B. R. Jeong, D. W. Lee, J. Y. Park, J. Y. Kwon, K. H. Lee, and I. Ch. Kim, "Preparation of metal/ ceramic composite ultrafiltration hollow fiber membranes", Membr. J., 19, 47 (2009).
  7. M. C. Shin, Y. C. Choi, and J. H. Park, "Development of ceramic membrane for metal ion separation of lignin extract from pulp process", Membr. J., 27, 199 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.199
  8. J. I. Calvo, A. Bottino, G. Capannelli, and A. Hernandez, "Comparison of liquid-liquid displacement porosimetry and scanning electron microscopy image analysis to characterise ultrafiltration track-etched membranes", J. Membr. Sci., 239, 189 (2004). https://doi.org/10.1016/j.memsci.2004.02.038
  9. R. Ziel, A. Haus, and A. Tulke, "Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis", J. Membr. Sci., 323, 241 (2008). https://doi.org/10.1016/j.memsci.2008.05.057
  10. F. H. She, K. L. Tung, and L. X. Kong, "Calculation of effective pore diameters in porous filtration membranes with image analysis", Robotics and Computer-Integrated Manufacturing, 24, 427 (2008). https://doi.org/10.1016/j.rcim.2007.02.023
  11. P. Elia, E. Nativ-Roth, Y. Zeiri, and Z.e. Porat, "Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs", Microporous and Mesoporous Materials, 225, 465 (2016). https://doi.org/10.1016/j.micromeso.2016.01.007
  12. J. I. Calvo, P. Pradanos, A. Hernandez, W. R. Bowen, N. Hilal, R. W. Lovitt, and P. M. Williams, "Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques", J. Membr. Sci., 128, 7 (1997). https://doi.org/10.1016/S0376-7388(96)00304-3
  13. W. Richard Bowen and T. A. Doneva, "Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion", Desalination, 129, 163 (2000). https://doi.org/10.1016/S0011-9164(00)00058-8
  14. N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, "Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes", J. Membr. Sci., 187, 227 (2001). https://doi.org/10.1016/S0376-7388(01)00348-9
  15. N. Hilal, H. Al-Zoubi, N. A. Darwish, and A. W. Mohammad, "Characterisation of nanofiltration membranes using atomic force microscopy", Desalination, 177, 187 (2005). https://doi.org/10.1016/j.desal.2004.12.008
  16. T. N. Shah, H. C. Foley, and A. L. Zydney, "Development and characterization of nanoporous carbon membranes for protein ultrafiltration", J. Membr. Sci., 295, 40 (2007). https://doi.org/10.1016/j.memsci.2007.02.030
  17. C. Li, Y. Ma, H. Li, and G. Peng, "A convenient method for the determination of molecular weight cut-off of ultrafiltration membranes", Chinese Journal of Chemical Engineering, 25, 62 (2017). https://doi.org/10.1016/j.cjche.2016.06.014
  18. J. Ren, Z. Li, and F.-S. Wong, "A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes", J. Membr. Sci., 279, 558 (2006). https://doi.org/10.1016/j.memsci.2005.12.052
  19. S. R. Wickramasinghe, S. E. Bower, Z. Chen, A. Mukherjee, and S. M. Husson, "Relating the pore size distribution of ultrafiltration membranes to dextran rejection", J. Membr. Sci., 340, 1 (2009). https://doi.org/10.1016/j.memsci.2009.04.056
  20. P. Shao, R. Y. M. Huang, X. Feng, and W. Anderson, "Gas liquid displacement method for estimating membrane pore‐size distributions", AIChE Journal, 50, 557 (2004). https://doi.org/10.1002/aic.10050
  21. K. Y. Wang, T.-S. Chung, and M. Gryta, "Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation", Chemical Engineering Science, 63, 2587 (2008). https://doi.org/10.1016/j.ces.2008.02.020
  22. M. M. Teoh and T.-S. Chung, "Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes", Separation and Purification Technology, 66, 229 (2009). https://doi.org/10.1016/j.seppur.2009.01.005
  23. A. Hernandez, J. I. Calvo, P. Pradanos, and F. Tejerina, "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method", J. Membr. Sci., 112, 1 (1996). https://doi.org/10.1016/0376-7388(95)00025-9
  24. J. M. Sanz, R. Peinador, J. I. Calvo, A. Hernandez, A. Bottino, and G. Capannelli, "Characterization of UF membranes by liquid-liquid displacement porosimetry", Desalination, 245, 546 (2009). https://doi.org/10.1016/j.desal.2009.02.019
  25. R. I. Peinador, J. I. Calvo, P. Pradanos, L. Palacio, and A. Hernandez, "Characterisation of polymeric UF membranes by liquid-liquid displacement porosimetry", J. Membr. Sci., 348, 238 (2010). https://doi.org/10.1016/j.memsci.2009.11.008
  26. J. I. Calvo, R. I. Peinador, P. Pradanos, L. Palacio, A. Bottino, G. Capannelli, and A. Hernandez, "Liquid-liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes", Desalination, 268, 174 (2011). https://doi.org/10.1016/j.desal.2010.10.016
  27. J. I. Calvo, A. Bottino, G. Capannelli, and A. Hernandez, "Pore size distribution of ceramic UF membranes by liquid-liquid displacement porosimetry", J. Membr. Sci., 310, 531 (2008). https://doi.org/10.1016/j.memsci.2007.11.035
  28. R. I. Peinador, J. I. Calvo, K. ToVinh, V. Thom, P. Pradanos, and A. Hernandez, "Liquid-liquid displacement porosimetry for the characterization of virus retentive membranes", J. Membr. Sci., 372, 366 (2011). https://doi.org/10.1016/j.memsci.2011.02.022
  29. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, and P. Simon, "Relation between the ion size and pore size for an electric double-layer capacitor", Journal of the American Chemical Society, 130, 2730 (2008). https://doi.org/10.1021/ja7106178
  30. K. Raj and B. Viswanathan, "Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile", Indian Journal of Chemistry, 48A, 1378 (2009).
  31. F. P. Cuperus, D. Bargeman, and C. A. Smolders, "Permporometry: the determination of the size distribution of active pores in UF membranes", J. Membr. Sci., 71, 57 (1992). https://doi.org/10.1016/0376-7388(92)85006-5
  32. G. Z. Cao, J. Meijernik, H. W. Brinkman, and A. J. Burggraaf, "Permporometry study on the size distribution of active pores in porous ceramic membranes", J. Membr. Sci., 83, 221 (1993). https://doi.org/10.1016/0376-7388(93)85269-3
  33. T. Tsuru, T. Hino, T. Yoshioka, and M. Asaeda, "Permporometry characterization of microporous ceramic membranes", J. Membr. Sci., 186, 257 (2001). https://doi.org/10.1016/S0376-7388(00)00692-X
  34. T. Tsuru, Y. Takata, H. Kondo, F. Hirano, T. Yoshioka, and M. Asaeda, "Characterization of sol-gel derived membranes and zeolite membranes by nanopermporometry", Separation and Purification Technology, 32, 23 (2003). https://doi.org/10.1016/S1383-5866(03)00036-4
  35. B. Bafarawa, A. Nepryahin, L. Ji, E. M. Holt, J. Wang, and S. P. Rigby, "Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids", Journal of Colloid and Interface Science, 426, 72 (2014). https://doi.org/10.1016/j.jcis.2014.03.053
  36. A. Leenaars, K. Keizer, and A. Burggraaf, "The preparation and characterization of alumina membranes with ultra-fine pores", Journal of Materials Science, 19, 1077 (1984). https://doi.org/10.1007/BF01120016
  37. Y. S. Lin and A. J. Burggraaf, "Experimental studies on pore size change of porous ceramic membranes after modification", J. Membr. Sci., 79, 65 (1993). https://doi.org/10.1016/0376-7388(93)85018-R
  38. I. P. Mardilovich, E. Engwall, and Y. H. Ma, "Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes", Desalination, 144, 85 (2002). https://doi.org/10.1016/S0011-9164(02)00293-X
  39. A. Zhang, Q. Zhang, H. Bai, L. Li, and J. Li, "Polymeric nanoporous materials fabricated with supercritical $CO_2$ and $CO_2$-expanded liquids", Chemical Society Reviews, 43, 6938 (2014). https://doi.org/10.1039/C4CS00100A
  40. A. Jena and K. Gupta, "Liquid extrusion techniques for pore structure evaluation of nonwovens", International Nonwovens Journal, 12, 45 (2003).
  41. D. Wang, K. Li, and W. K. Teo, "Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive", J. Membr. Sci., 176, 147 (2000). https://doi.org/10.1016/S0376-7388(00)00419-1