Browse > Article
http://dx.doi.org/10.5695/JKISE.2016.49.6.530

Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique  

Shin, Sung-Chul (Surface Technology Division Korea, Institute of Materials Science)
Kim, Ji-Won (Surface Technology Division Korea, Institute of Materials Science)
Kwon, Se-Hun (Dept. of Materials Science & Engineering, Pusan National University)
Lim, Jae-Hong (Surface Technology Division Korea, Institute of Materials Science)
Publication Information
Journal of the Korean institute of surface engineering / v.49, no.6, 2016 , pp. 530-538 More about this Journal
Abstract
There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.
Keywords
$Si_3N_4$; Electrochemical process; 3-Aminopropyltriethoxysilane; Silane; Electroless deposition; Resistivity; Adhesion strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Devin, Method of Forming Conductive Traces on Insulated Substrate (2014).
2 Y. J. Heo, H. T. Kim, K. J. Kim, S. Nahm, Y. J. Yoon, and J. Kim, Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package, Appl. Therm. Eng. 50 (2013) 799-804.   DOI
3 A. Miller, L. Yu, J. Blickensderfer, and R. Akolkar, Electrochemical copper metallization of glass substrates mediated by solution-phase deposition of adhesion-promoting layers, J. Electrochem. Soc. 162 (2015) D630-D634.   DOI
4 P. Walker, Silane and other adhesion promoters in adhesive technology, Handbook of Adhesive Technology 2 (2003) 205-221.
5 J. Kudr, S. Skalickova, L. Nejdl, A. Moulick, B. Ruttkay-Nedecky, V. Adam, and R. Kizek, Fabrication of solid-state nanopores and its perspectives, Electrophoresis 36 (2015) 2367-2379.   DOI
6 J. Sittikun, Y. Boonyongmaneerat, P. Weerachawanasak, P. Praserthdam, and J. Panpranot, Pd/$TiO_2$ catalysts prepared by electroless deposition with and without $SnCl_2$ sensitization for the liquid-phase hydrogenation of 3-hexyn-1-ol, Reaction Kinetics, Mechanisms and Catalysis 111 (2014) 123-135.   DOI
7 Y. K. Cho, K. Y. Ahn, and Y. S. Park, A study on adhesion strength of electroless plated deposits on Alumina substrate, J. Kor. Inst. Surf. Eng. 24 (1991) 187-195.
8 N. Abe, Y. Otani, M. Miyake, M. Kurita, H. Takeda, S. Okamura, and T. Shiosaki, Influence of a $TiO_2$ adhesion layer on the structure and the orientation of a pt layer in Pt/$TiO_2$/$SiO_2$/Si structures, Jpn. J. Appl. Phys 42 (2003) 2791-2795.   DOI
9 K. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass, J. Non Cryst. Solids 203 (1996) 27-36.   DOI
10 G. Matrajt, J. Borg, P. Raynal, Z. Djouadi, L. d'Hendecourt, G. Flynn, and D. Deboffle, FTIR and raman analyses of the tagish lake meteorite: Relationship with the aliphatic hydrocarbons observed in the diffuse interstellar medium, Astronomy & Astrophysics 416 (2004) 983-990.   DOI
11 U. Kirchner, V. Scheer, and R. Vogt, FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of $NO_2$ and $HNO_3$ with soot, J. Phys. Chem. A 104 (2000) 8908-8915.   DOI
12 A. Rittermeier, S. Miao, M. K. Schroter, X. Zhang, van den Berg, Maurits WE, S. Kundu, Y. Wang, S. Schimpf, E. Loffler, and R. A. Fischer, The formation of colloidal copper nanoparticles stabilized by zinc stearate: One-pot single-step synthesis and characterization of the core-shell particles, Phys. Chem. Chem. Phys. 11 (2009) 8358-8366.   DOI
13 S. L. Brandow, W. J. Dressick, C. R. Marrian, G. Chow, and J. M. Calvert, The morphology of electroless ni deposition on a colloidal pd (II) catalyst, J. Electrochem. Soc. 142 (1995) 2233-2243.   DOI
14 M. Honkanen, M. Hoikkanen, M. Vippola, J. Vuorinen, T. Lepisto, P. Jussila, H. Ali-Loytty, M. Lampimaki, and M. Valden, Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids, Appl. Surf. Sci. 257 (2011) 9335-9346.   DOI
15 M. Bechelany, A. Brioude, S. Bernard, G. Ferro, D. Cornu, and P. Miele, Large-scale preparation of faceted Si3N4 nanorods from $\beta$-SiC nanowires, J. Nanotech. 18 (2007) 335305.   DOI
16 K. H. Leong, H. Y. Chu, S. Ibrahim, and P. Saravanan, Palladium nanoparticles anchored to anatase $TiO_2$ for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity, Beilstein J. Nanotech. 6 (2015) 428-437.   DOI
17 A. Hamada, P. Sahu, and D. Porter, Indentation property and corrosion resistance of electroless nickel-phosphorus coatings deposited on austenitic high-mn TWIP steel, Appl. Surf. Sci. 356 (2015) 1-8.   DOI
18 A. Standard, D3359-09e2. standard test methods for measuring adhesion by tape test., ASTM International (2009).
19 W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and rockwell-C adhesion tests, Thin Solid Films 270 (1995) 431-438.   DOI