• Title/Summary/Keyword: Alteromonadaceae

Search Result 8, Processing Time 0.024 seconds

Marine Prokaryotic Diversity of the Deep Sea Waters at the Depth of 1500 m Off the Coast of the Ulleung Island in the East Sea (Korea) (울릉도 연안 수심 1500 m에 서식하는 해양미생물군집의 분포)

  • Kim, Mi-Kyung;Khang, Yongho
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.328-331
    • /
    • 2012
  • Microbial diversity in the 1500 m depth sea waters off the coast of Ulleung island of the East Sea, Korea, was investigated. Genomic DNAs were extracted directly from the marine microbes filtered through ultramembrane filters. Pyrosequencing of 16S rDNAs of these microbes resulted in 13,029 reads, of which uncultured bacteria consisted of 54.1%, alphaproteobacteria 23.4%, and gammaproteobacteria 22.3%. Other classes such as flavobacteria, actinobacteria, and epsilonproteobacteria were distributed within 0.2% of total reads. Among the cultivable bacteria, it was found that Rhodobacteraceae family of alphaproteobacteria, Alteromonadaceae, Halomonadaceae, and Piscirickettsiaceae families of gammaproteobacteria were mostly distributed in the deep-sea waters.

Isolation and Identification of a Histamine-degrading Barteria from Salted Mackerel (자반고등어에서 histamine 분해능을 가진 세균의 분리 동정)

  • Hwang Su-Jung;Kim Young-Man
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.743-748
    • /
    • 2005
  • Histamine can be produced at early spoilage stage through decarboxylation of histidine in red-flesh fish by Proteus morganii, Hafnia alvei or Klebsiella pneumoniae. Allergic food poisoning is resulted from the histamine produced when the freshness of Mackerel degrades. Conversely it has been reported that there are bacteria which decompose histamine at the later stage. We isolated histamine decomposers from salted mackerel and studied the characteristics to help establish hygienic measure to prevent outbreak of salted mackerel food poisoning. All the samples were purchased through local supermarket. Histamine decomposers were isolated using restriction medium using histamine 10 species were selected. Identification of these isolates were carried out by the comparison of 16S rDNA partial sequence; as a result, we identified Pseudomonas putida strain RA2 and Halomonas marina, Uncultured Arctic sea ice bacterium clone ARKXV1/2-136, Halomonas venusta, Psychrobacter sp. HS5323, Pseudomonas putida KT2440, Rhodococcus erythropolis, Klebsiella terrigena (Raoultella terrigena), Alteromonadaceae bacterium T1, Shewanella massilia with homology of $100\%,{\;}100\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}100\%,{\;}95\%,{\;}99\%,{\;}and{\;}100\%$respectively. Turbidometry determination method and enzymic method were employed to determine the ability of histamine decomposition. Among those species Shewanella massilia showed the highest in ability of histamine decomposition. From these results we confirmed various histamine decomposer were present in salted mackerel product in the market.

Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea

  • Chi, Won-Jae;Park, Jae-Seon;Kwak, Min-Jung;Kim, Jihyun F.;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1509-1518
    • /
    • 2013
  • An agar-degrading bacterium, designated as strain $G7^T$, was isolated from a coastal seawater sample from Gaya Island (Gayado in Korean), Republic of Korea. The isolated strain $G7^T$ is gram-negative, rod shaped, aerobic, non-motile, and non-pigmented. A similarity search based on its 16S rRNA gene sequence revealed that it shares 95.5%, 90.6%, and 90.0% similarity with the 16S rRNA gene sequences of Catenovulum agarivorans $YM01^T$, Algicola sagamiensis, and Bowmanella pacifica W3-$3A^T$, respectively. Phylogenetic analyses demonstrated that strain $G7^T$ formed a distinct monophyletic clade closely related to species of the family Alteromonadaceae in the Alteromonas-like Gammaproteobacteria. The G+C content of strain $G7^T$ was 41.12 mol%. The DNA-DNA hybridization value between strain $G7^T$ and the phylogenetically closest strain $YM01^T$ was 19.63%. The genomes of $G7^T$ and $YM01^T$ had an average ANIb value of 70.00%. The predominant isoprenoid quinone of this particular strain was ubiquinone-8, whereas that of C. agarivorans $YM01^T$ was menaquinone-7. The major fatty acids of strain $G7^T$ were Iso-$C_{15:0}$ (41.47%), Anteiso-$C_{15:0}$ (22.99%), and $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$ (8.85%), which were quite different from those of $YM01^T$. Comparison of the phenotypic characteristics related to carbon utilization, enzyme production, and susceptibility to antibiotics also demonstrated that strain $G7^T$ is distinct from C. agarivorans $YM01^T$. Based on its phenotypic, chemotaxonomic, and phylogenetic distinctiveness, strain $G7^T$ was considered a novel genus and species in the Gammaproteobacteria, for which the name Gayadomonas joobiniege gen. nov. sp. nov. (ATCC BAA-2321 = $DSM25250^T=KCTC23721^T$) is proposed.

Investigation of Microbial Communities in Sulculus diversicolor supertexta Through 16S rRNA Sequencing and Antibacterial Monitoring of Harmful Strains (16S rRNA 염기서열 분석을 통한 오분자기(Sulculus diversicolor supertexta)내 미생물 군집 조사 및 인체유해 질병세균에 대한 항균활성 모니터링)

  • Kim, Min-Seon;Lee, Seung-Jong;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1477-1488
    • /
    • 2018
  • This study investigated the muscles, intestines, and gonads of Sulculus diversicolor supertexta to examine the diversity of microbial communities within examples collected from the Jeju Coast. Using different media, initial pure isolation in MA, 1% BHIA, and 1% TSA indicated that the muscles, intestines, and gonads supported more communities, respectively. In analysis of relative similarity with 16s rRNA sequencing, 190 pure colonies were isolated, and further analysis with NBLAST identified 71 species, 39 genera, 25 families, and five phyla. Homogeny with the reference strain was 91-100%. Microbial communities in S. supertexta consisted of gamma and alpha Proteobacteria (48%), Actinobacteria (32.5%), Firmicutes (16.9%), Deinococcus-Thermus (1.3%), and Bacteroides (1.3%). In all tissue, Psychrobacter cibarius in Moraxellaceae was dominant. Alteromonadaceae, Enterobacteriaceae, Pasturellaceae, Moraxellaceae, Rhodobacteraceae, Geminicoccaceae, Dietziaceae, Intrasporangiaceae, Microbacteriaceae, Micrococcaceae, Micromonosporaceae, Streptomycetaceae, Aerococcaceae, Bacillaceae, Paenibacillaceae, Planococcaceae, and Staphylcoccaceae were commonly isolated across all tissues, and Flavobacteriaceae, Corynebacteriaceae, Yesiniaceae, Vibrionaceae, Hahellaceae, Pseudomonadaceae were also identified from the intestines. In microbial monitoring of four harmful bacteria, Streptomyces albus (96%) showed antibacterial activity against all four strains, and Agrococcus baldri (99%) and Psychrobacter nivimaris (99%) presented against E. Coli and E. aerogens. In addition, some strains with low homogeny were isolated and further experiments are therefore required, for example to refine the antimicrobial substances including new strain investigations. These additional experiments would aim to establish generic resources for the microbial communities in S. Supertexta and provide basic data for applied microbiological research.

The Diversity of Culturable Organotrophic Bacteria from Local Solar Salterns

  • Yeon, Sun-Hee;Jeong, Won-Jin;Park, Jin-Sook
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • We isolated and cultured bacteria inhabiting solar saltern ponds in Taean-Gun, Chungnam Province, Korea. All of the isolated 64 strains were found to be moderately halophilic bacteria, growing in a salt range of 2-20 %, with an optimal concentration of 5% salt. Bacterial diversity among the isolated halophiles was evaluated via RFLP analyses of PCR-amplified 16S rDNAs, followed by phylogenetic analysis of the partial 16S rDNA sequences. The combination of restriction enzyme digestions with HaeIII, CfoI, MspI and RsaI generated 54 distinct patterns. A neighbor-joining tree of the partial 16S rDNA sequences resulted in the division of the 64 strains into 2 major groups, 45 strains of ${\gamma}-Proteobacteria$ (70.3%) and 19 strains of Firmicutes (29.7%). The ${\alpha}-Proteobacteria$ and Cytophaga-Flavobacterium-Bacterioides groups, which were repeatedly found to exist in thalassohaline environments, were not represented in our isolates. The ${\gamma}-Proteobacteria$ group consisted of several subgroups of the Vibrionaceae (37.5%), Pseudoalteromonadaceae (10.9%), Halomonadaceae (7.8%), Alteromonadaceae (7.8%), and Idiomarinaceae (6.3%). Members of Salinivibrio costicola (29.7%) were the most predominant species among all of the isolates, followed by Halobacillus treperi (12.5%). Additionally, three new species candidates were found, based on similarities of the 16S rDNA sequences to those of previously published species.

The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence (16S rDNA염기서열에 의한 불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균 군집의 다양성)

  • Choi, Gang-Guk;Lee, Oh-Hyung;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.307-312
    • /
    • 2003
  • To study the diversity of heterotrophic bacteria isolated from intestine of starfish, Asterias amurensis, we collected starfishes from the coastal area near Jangheung-Gun, Jeollanam-Do, Korea during July, 2000. Population density and bacterial diversity in the intestine of starfish were measured. The results were as follows; The population densities of heterotrophic bacteria in the intestine of starfish were 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$. Gram positive bacteria occupied 59% among 29 isolates. The community structure of dominant heterotrophic bacteria in the intestine of starfish consisted of Bacillaceae in the low G+C gram positive bacteria subphylum, Microbacteriaceae in the high G+C gram positive bacteria subphylum, and Alteromonadaceae in ${\gamma}$-Proteobacteria subphylum. Among eight strains of Bacillus spp., three strains showed more than 97% identity, but five strains showed about 90% identity with type strain on the basis of partial 16S rDNA sequence.

Analysis of Intestinal Microbial Communities of Topshell (Turbo cornutus) fromCoast of Jeju Island, Korea by 16S rDNA Sequence Analysis (16S rDNA 염기서열 분석을 통한 제주연안 소라(Turbo cornutus) 장내세균 다양성 조사)

  • Kim, Min-Sun;Han, Song-Hun;Choi, Jung Hwa;Heo, Moon Soo;Ko, Jun-Chul
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.721-728
    • /
    • 2022
  • This study investigated the diversity of intestinal microbial communities isolated from the intestine of topshell (Turbo cornutus) from the coast of Jeju Island (Beobhwan, Seogwipo city). Pure cultivation using the standard marine agar (MA) medium showed the most significant number of clusters. Aerobic and anaerobic culture allowed isolation of strains of 1.8×105 CFU·g-1 and 0.4×10 CFU·g-1 on average, respectively. The microbial population in the topshell intestine was classified into 4 phyla, 12 families, 26 genera, and 67 species. The microbes in the topshell intestine were detected by homology with 93~100% with standard strains. The microbes in the topshell intestine consisted of Proteobacteria 39%, Firmicutes 34%, Actinobacteria 21%, and Bacteroidets 6%. The identified families were Alteromonadaceae (1), Shewanellaceae (4), Vibrionaceae (12), Phyllobacteriaeceae (1), Rhodobacteraceae (8), Bacillaceae (21), Paenibacillaceae (2), Cellulomonadaceae (1), Mycobacteriaceae (6), Nocardiaceae (4), Streptomycetaceae (3) and Flavobacteriaceae (4). Bacillus sp. and Vibrio sp. accounted for the greatest portion of the separated strains. Among the isolated microorganisms, some strains had probiotic functions.

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.