Browse > Article
http://dx.doi.org/10.5141/JEFB.2003.26.6.307

The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence  

Choi, Gang-Guk (Dept. of Microbiology, Chungnam National University)
Lee, Oh-Hyung (Major in Molecular Biology & Genetics, Mokpo National University)
Lee, Geon-Hyoung (Faculty of Science & Technology, Kunsan University)
Publication Information
The Korean Journal of Ecology / v.26, no.6, 2003 , pp. 307-312 More about this Journal
Abstract
To study the diversity of heterotrophic bacteria isolated from intestine of starfish, Asterias amurensis, we collected starfishes from the coastal area near Jangheung-Gun, Jeollanam-Do, Korea during July, 2000. Population density and bacterial diversity in the intestine of starfish were measured. The results were as follows; The population densities of heterotrophic bacteria in the intestine of starfish were 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$. Gram positive bacteria occupied 59% among 29 isolates. The community structure of dominant heterotrophic bacteria in the intestine of starfish consisted of Bacillaceae in the low G+C gram positive bacteria subphylum, Microbacteriaceae in the high G+C gram positive bacteria subphylum, and Alteromonadaceae in ${\gamma}$-Proteobacteria subphylum. Among eight strains of Bacillus spp., three strains showed more than 97% identity, but five strains showed about 90% identity with type strain on the basis of partial 16S rDNA sequence.
Keywords
16S rDNA; Dominant genus; Phylogenetic tree; Population density; Starfish (Asterias amurensis);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI   ScienceOn
2 Thompson, F.L., C.C. Thompson and J. Swings. 2003. Vibrio tasmaniensis sp. nov., isolated from Atlantic salmon (Salrno salar L.). Syst. Appl. Microbiol. 26: 65-69
3 Unkles, S.E. 1977. Bacterial flora of the sea urchin Echinus esculentus. Appl. Environ. Microbiol. 34: 347-350
4 Wagner, M., B. Assmus, A. Hartmann, P. Hutzler and R. Amann. 1994. In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J. Microsc. 176: 181-187
5 Weiss, P., B. Schweitzer, R. Amann and M. Simon. 1996. Identification in situ and dynamics of bacteria on limnetic organic aggregates (lake snow). Appl. Environ. Microbiol. 62: 1998-2005
6 Fuhrman, J.A. 2002. Community structure and function in prokaryotic marine plankton. Antonie Van Leeuwenhoek 81: 521-527   DOI   ScienceOn
7 Gerhardt, P.M., W.A. Wood and N.R Krieg. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
8 Gillespie, N.C. and I.C. Macrae. 1975. The bacterial flora of some Queensland fish and its ability to cause spoilage. J. Appl. Bacteriol. 39: 91-100
9 Glockner, F.O., B.M Fuchs and R Amann. 1999. Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726
10 Holben, W.E., P. Williams, M. Saarinen, L.K. Sarkilahti and J.H. Apajalahti. 2002. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb. Ecol. 44: 175-185   DOI   ScienceOn
11 Horsrly, R.W. 1973. The bacterial flora of the Atlantic salmon (Salm sala L.) in relation to its environment. J. Appl. Bacteriol. 49: 377-386
12 Joung, P.-M., K-S. Shin, J.-s Lim, I.S. Lee and S.J. Park. 2001. Diversity of acid-tolerant epiphytic bacterial communities on plant leaves in the industrial area and the natural forest area based on 16S rDNA. Kor. J. Microbiol. 37: 265-272
13 Maidak B.L., J.R. Cole, T.G. Lilbum, C.T. Parker, P.R. Saxman Jr., and J.M. Stredwick. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174   DOI   ScienceOn
14 O'Sullivan, L.A., A.J. Weightman and J.C. Fry. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl. Environ. Microbiol. 68: 201-210   DOI   ScienceOn
15 Ringo, E., J.B. Lodemel, R. Myklebust, T. Kaino, T.M. Mayhew and R.E. Olsen. 2001a. Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpinus L.). An electron microscopical study. J. Appl. Microbiol. 90: 294-300
16 Ringo, E., M.S. Wesmajervi, H.R. Bendiksen, A. Berg, R.E. Olsen, and T. Johnsen. 2001b. Identification and characterization of Camobacteria isolated from fish intestine. Syst. Appl. Microbiol. 24: 183-191   DOI   ScienceOn
17 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406-425
18 Sleeter, T.D., P.J. Boyle, A.M. Cundell and R. Mitchell. 1978. Relationship between marine micro-organisms and the woodboring isopod Limnoria tripunctata. Mar. Biol. 45: 329-336.
19 Eden, P.A., T.M Schmidt, R.P. Blakemore and N.R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA Int. J. Syst. Bacteriol. 41: 324-325
20 Cottrell, M.T. and S.C. Cary. 1999. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deepsea hydrothermal vent polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 65: 1127-1132
21 Felsenstein, J. 1985. Confidence limits on phylogenis: An approach using the bootstrap. Evolution 39: 783-791   DOI   ScienceOn
22 Austin, B., D. Bucke, S.W. Feist and M. M. Helm. 1987. Disease problems among cultured bivalve larvae. MAFF Fisheries publication
23 Boyle, PJaRM. 1978. Absence of micro-organisms in crustacean digestive tracts. Science 20: 1157-1159
24 MacDonald, N.L., J.R. Stark and B. Austin. 1986. Bacterial microflorain the gastro-intestinal tract of Dover sole (Solea soleaL.), with emphasis on the possible role of bacteria in the nutrition of the host. FEMS Microbiol. Lett. 35: 107-111   DOI   ScienceOn
25 Lee, G.-H., G.G. Choi and C.B. Baek. 1996. Distribution of aerobic/anaerobic saprophytic bacteria in the sediments of the Yellow sea near Kunsan, Koea. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 227-232
26 Litchfield, C.D. and P.M Gillevet. 2002. Microbial diversity and complexity in hypersaline environments: A preliminary assessment. J. Ind. Microbiol. Biotechnol. 28: 48-55
27 Lovelace, T.E., H. Tubiash and R.R. Colwell. 1968. Quantitative and qualitative commensal bacterial flora of Crassostrea virginica in Chesapeake Bay. Proc. Nat. Shellfish Association 58: 82-87
28 Amann, R.I., W. Ludwig, K.H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 59: 143-69