Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08007

Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea  

Chi, Won-Jae (Division of Biological Science and Bioinformatics, Myongji University)
Park, Jae-Seon (Division of Biological Science and Bioinformatics, Myongji University)
Kwak, Min-Jung (Biosystems and Bioengineering Program, University of Science and Technology)
Kim, Jihyun F. (Department of Systems Biology, Yonsei University)
Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Hong, Soon-Kwang (Division of Biological Science and Bioinformatics, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.11, 2013 , pp. 1509-1518 More about this Journal
Abstract
An agar-degrading bacterium, designated as strain $G7^T$, was isolated from a coastal seawater sample from Gaya Island (Gayado in Korean), Republic of Korea. The isolated strain $G7^T$ is gram-negative, rod shaped, aerobic, non-motile, and non-pigmented. A similarity search based on its 16S rRNA gene sequence revealed that it shares 95.5%, 90.6%, and 90.0% similarity with the 16S rRNA gene sequences of Catenovulum agarivorans $YM01^T$, Algicola sagamiensis, and Bowmanella pacifica W3-$3A^T$, respectively. Phylogenetic analyses demonstrated that strain $G7^T$ formed a distinct monophyletic clade closely related to species of the family Alteromonadaceae in the Alteromonas-like Gammaproteobacteria. The G+C content of strain $G7^T$ was 41.12 mol%. The DNA-DNA hybridization value between strain $G7^T$ and the phylogenetically closest strain $YM01^T$ was 19.63%. The genomes of $G7^T$ and $YM01^T$ had an average ANIb value of 70.00%. The predominant isoprenoid quinone of this particular strain was ubiquinone-8, whereas that of C. agarivorans $YM01^T$ was menaquinone-7. The major fatty acids of strain $G7^T$ were Iso-$C_{15:0}$ (41.47%), Anteiso-$C_{15:0}$ (22.99%), and $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$ (8.85%), which were quite different from those of $YM01^T$. Comparison of the phenotypic characteristics related to carbon utilization, enzyme production, and susceptibility to antibiotics also demonstrated that strain $G7^T$ is distinct from C. agarivorans $YM01^T$. Based on its phenotypic, chemotaxonomic, and phylogenetic distinctiveness, strain $G7^T$ was considered a novel genus and species in the Gammaproteobacteria, for which the name Gayadomonas joobiniege gen. nov. sp. nov. (ATCC BAA-2321 = $DSM25250^T=KCTC23721^T$) is proposed.
Keywords
Agarase; Alteromonadaceae; Alteromonas-like Gammaproteobacteria; agar degradation; Gayadomonas joobiniege;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Akagawa-Matsushita M, Matsuo M, Koga Y, Yamasato K. 1992. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int. J. Syst. Evol. Bacteriol. 42: 621-627.   DOI
2 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein data base. Nucleic Acids Res. 25: 3389-3402.   DOI   ScienceOn
3 Chen H-M, Zheng L, Yan X-J. 2005. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol. Biotechnol. 43: 29-36.
4 Chen LP, Xu HY, Fu SZ, Fan HX, Liu YH, Liu SJ, et al. 2009. Glaciecola lipolytica sp. nov., isolated from seawater near Tianjin city, China. Int. J. Syst. Evol. Bacteriol. 59: 73-76.   DOI   ScienceOn
5 Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW, Wagner-Dobler I. 2007. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanense estuary. Int. J. Syst. Evol. Microbiol. 57: 1209-1216.   DOI   ScienceOn
6 Chi W-J, Lim J-H, Park DY, Kim M-C, Kim C-J, Chang Y-K, et al. 2013. Isolation and characterization of a novel agar degrading bacterium, Alteromonas macleodii subsp. GNUM08120, from red macroalgae. Korean J. Microbiol. Biotechnol. 41: 8-16.   DOI   ScienceOn
7 Chi W-J, Chang Y-K, Hong S-K. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930.   DOI   ScienceOn
8 Chimetto LA, Cleenwerck L, Moreira APB, Brocchi M, Willems A, Vos PD, et al. 2011. Vibrio variabilis sp. nov. and Vibrio marinus sp. nov., isolated from Palythoa caribaeorum. Int. J. Syst. Evol. Bacteriol. 61: 3009-3015.   DOI   ScienceOn
9 Chun JS, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. Extaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI   ScienceOn
10 Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283-1287.   DOI   ScienceOn
11 Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I. 2010. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci. Biotechnol. Biochem. 74: 766-770.   DOI   ScienceOn
12 Felsenstein J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
13 Ivanova EP, Flavier S, Christen R. 2004. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Altermonadaceae and proposal of Pseudolateromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int. J. Syst. Evol. Microbiol. 54: 1773-1778.   DOI   ScienceOn
14 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.
15 Invanova EP, Mikhailov VV. 2001. A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Mikrobiologiya 70: 15023 (in Russian).
16 Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM, Sergeev AF, et al. 2005. Alteromonas addita sp. nov. Int. J. Syst. Evol. Microbiol. 55: 1065-1068.   DOI   ScienceOn
17 Jean WD, Chen JS, Lin YT, Shieh WY. 2006. Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int. J. Syst. Evol. Microbiol. 56: 2463-2467.   DOI   ScienceOn
18 Jean WD, Shieh WY, Liu TY. 2006. Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas. Int. J. Syst. Evol. Microbiol. 56: 1245-1250.   DOI   ScienceOn
19 Ji J, Wang L-C, Wu H, Luan H-M. 2011. Bio-function summary of marine oligosaccharides. Int. J. Biol. 3: 74-86.
20 Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
21 Kim J, Hong S-K. 2012. Isolation and characterization of an agarase-producing bacterial strain, Alteromonas sp. GNUM-1, from the west sea, Korea. J. Microbiol. Biotechnol. 22: 1621-1628.   DOI   ScienceOn
22 Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge Univesity Press, UK.
23 Kobayashi T, Imada C, Hiraishi A, Tsujibo H, Miyamoto K, Inamori Y, et al. 2003. Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int. J. Syst. Evol. Microbiol. 53: 1807-1811.   DOI   ScienceOn
24 Kwak MJ, Song JY, Kim BK, Chi W-J, Kwon S-K, Choi S, et al. 2012. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. G7. J. Bacteriol. 194: 6961-6962.   DOI   ScienceOn
25 Lai Q, Yuan JY, Wang B, Sun F, Qiao N, Zheng T, et al. 2009. Bowmanella pacifica sp. n ov., i solated from a py renedegrading consortium. Int. J. Syst. Evol. Microbiol. 59: 1579- 1582.   DOI   ScienceOn
26 Martinez-Checa F, Bejar W, Llamas I, del Moral A, Quesda E. 2005. Alteromonas hispanica sp. nov., a polyunsaturatedfatty- acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 2385-2390.   DOI   ScienceOn
27 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
28 Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application note 228-241. Hewlett-Packard Co., Avondale, PA.
29 Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE.
30 Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.   DOI   ScienceOn
31 Romanenko LA, Zhukova NV, Lysenko AM, Mikhailov VV, Stackebrandt E. 2003. Assignment of 'Alteromonas marinoglutinosa' NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int. J. Syst. Evol. Microbiol. 53: 1105-1109.   DOI   ScienceOn
32 Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E. 2003. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int. J. Syst. Evol. Microbiol. 53: 647-651.   DOI   ScienceOn
33 Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
34 Tanaka H, Romanenko LA, Frolova GM, Mikhailov VV. 2010. Aestuariibacter litoralis sp. nov., isolated from a sandy sediment of the Sea of Japan. Int. J. Syst. Evol. Microbiol. 60: 317-320.   DOI   ScienceOn
35 Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
36 Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. 2004. Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Artic Ocean, and emended description of the genus Glaciecola. Int. J. Syst. Evol. Microbiol. 54: 1765- 1771.   DOI   ScienceOn
37 Yan S, Yu M, Wang Y, Shen C, Zhang XH. 2011. Catenovulum agarivorans gen. nov. sp. nov., a peritrichously flagellated, catenated, agar-hydrolyzing γ-Proteobacterium isolated from Yellow Sea. Int. J. Syst. Evol. Microbiol. 61: 2866-2873.   DOI   ScienceOn
38 Yi H, Bae KS, Chun J. 2004. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Altermonas macleodii. Int. J. Syst. Evol. Microbiol. 54: 571-576.   DOI   ScienceOn