• Title/Summary/Keyword: Alternative fine aggregate

Search Result 42, Processing Time 0.023 seconds

Investigation of Waste Shell Fine Aggregates on the Material Characteristics of Cement Mortars (패각 잔골재가 시멘트 모르타르 재료 특성에 미치는 영향 분석)

  • Oh, Seo-Eun;Choi, Seung-Ha;Kim, Kyuwon;Han, Soo-Ho;Chung, Sang-Yeop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • This study explores the utilization of common marine wastes, specifically seashells, such as oysters and cockles, as alternative fine aggregates in construction materials. The considered seashells were cleaned and pre-processed for use as a substitute for aggregate in mortar. Cement mortar specimens were prepared under different conditions, such as substitution ratios and the cleaning status of the seashells. The compressive strength of the mortars specimens was evaluated, and the solid and porous structures of each specimen were analyzed using microstructure analysis methods such as XRD, SEM, and micro-CT. The results confirmed that oyster and cockle seashells are composed of different calcium carbonate polymorphs, and their microstructural characteristics influence the mechanical properties of the cement mortar specimens.

Fundamental Study on the properties of concrete incoporating pond-ash as fine aggregate (잔골재로서 매립회를 혼입한 콘크리트의 특성에 관한 기초 연구)

  • Lee, Bong-Chun;Chae, Sung-Tae;Woo, Young-Je;Kim, Jin-Sung;Kim, Joo-Hyung;Ryu, Hwa-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.477-480
    • /
    • 2008
  • With an increase of power consumption due to industrial development, the generation of coal ash has been growing tremendously and, accordingly, environmental concern over its disposal and insufficiency in disposal sites have been raised as other issues to be considered. In order to examine the usability of coal ash as an aggregate for concrete, such fundamental information as slump, air contents, mechanical properties and durability of concrete has been secured by way of setting 10, 20 or 30 wt. % of fine aggregate alternative rate of ash and identifying its basic properties at each pond-ash contents. The results of the study indicate that slump and air content heavily depend on the site of generation, and this might greatly influence on the content of fine particles of the ash. It is also shown that its freezing and thawing resistance tends to be relatively lower than that of Plain, which requires comprehensive examination over next few years on the absorptiveness and properties of mixed water of the ash collected from each disposal site.

  • PDF

Enhancement in the quality of mortar which uses uses 3-type blast-furnace slag cement and circulated fine aggregate, according to replacement ratio changes of waste refractories and desulfurized plaster (폐내화물 및 탈황석고의 치환율 변화에 따른 3종 고로슬래그 시멘트와 순환잔골재를 사용하는 모르타르의 품질향상)

  • Lee, Jae-Jin;Lee, Jea-Hyeon;Baek, Cheol;Kim, Min-Sang;Yoon, Won-Geun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.56-57
    • /
    • 2016
  • Recently amongst Korea's construction companies there has been heightened interest in environment load reduction and resource recycling. As a result, the construction industry is examining recycled materials alternative to cement and blast-furnace slag (BS henceforth) cement, such as waste refractories and desulfurized plaster. This study analyzes the liquidity and intensity characteristics of mortar according to changes in replacement ratios of waste refractories and desulfurized plaster, used as industry by-products in mortar environments that use BS 3-type cements and circulated fine aggregate. As a result, the greater the increase in replacement ratios of desulfurized plaster, the greater the increase in liquidity and air quantity, as well as compression strength.

  • PDF

The Segregation of Concrete Containing Atomized Steel Slag Fine Aggregate (개질처리 제강슬래그를 혼합한 굳지않은 콘크리트의 재료분리)

  • Moon, Han-Young;Yoo, Jung-Hoon;Jung, Chul-Hei
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.600-603
    • /
    • 2004
  • Recently, the river sands are in short supply. Gathering sea-sand will be faced with difficulty. Alternative aggregates for concrete are estimated by many researchers. The aggregates are blast furnace slag, steel slag, copper slag, ferro-nickel slag and recycled aggregate and etc. Nevertheless steel slag has been limited in practical use due to its expansibility which is occurred reaction with water and free CaO in slag. Most recently stable management method is to minimize the expansibility researched and developed. First of all, slump, air content, compressive strength and flexural strength are measured in concrete. An estimate is made of the segregation of concrete containing atomized steel slag by Image Analyser program.

  • PDF

The Characteristics of Isothermal Conduction Calorimetry and Specific Heat in Coal Gasification Slag (석탄 가스화 용융 슬래그의 비열 및 미소수화열 특성)

  • Han, Jun-Hui;Hu, Yun-Yao;Lim, Gun-Su;Kim, Su-Hoo;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.182-183
    • /
    • 2021
  • In this study, This is the result of thermal characteristics analysis to suggest an efficient method of using coal gasification slag(CGS) of byproduct from integrated gasification combined cycle(IGCC). In Specific Heat characteristics, CGS and CS showed similar values. Isothermal Conduction Calorimetry showed that the hydration reaction of cement was retarded when CGS was used. Therefore, it is expected that CGS will be used as an efficient alternative to reducing the hydration heat of mass concrete as a functional aggregate combination.

  • PDF

Analyzing the Engineering Properties of Cement Mortar using Raw Coal Ash as a Microfines for the Mixed Aggregate (미정제 석탄회를 혼합골재의 미립분 보충재로 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • The aim of the research is improving the quality of concrete by using the alternative aggregate resources and recycling wastes. To make a combined aggregate fitted in standard particle size distribution curve, crushed sand from blasted rock debris was used as a base aggregate. Additionally, to increase the portion of fine particles, sea sand was mixed. Although these aggregate combination fit the standard particle size distribution curve, in this research, raw coal ash was replaced as a microfine. According to the experiment, by replacing 5% raw coal ash, the most favorable results were achieved in aggregate gradation and cement mortar quality.

Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers

  • Tammam, Yosra;Uysal, Mucteba;Canpolat, Orhan
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2022
  • Geopolymers are an important alternative material supporting recycling, sustainability, and waste management. Durability properties are among the most critical parameters to be investigated; in this study, the durability of manufactured geopolymer samples under the attack of 10% magnesium sulfate and 10% sodium sulfate solution was investigated. 180 cycles of freezing and thawing were also tested. The experimentally obtained results investigate the durability of geopolymer mortar prepared with fly ash (class F) and alkali activator. Three different quarry dust wastes replaced the river sand aggregate: limestone, marble, and basalt powder as fine filler aggregate in three different replacement ratios of 25%, 50%, and 75% to produce ten series of geopolymer composites. The geopolymer samples' visual appearance, weight changes, UPV, and strength properties were studied for up to 12 months at different time intervals of exposure to sulfate solutions to investigate sulfate resistance. In addition, Scanning Electron Microscopy (SEM), EDS, and XRD were used to study the microstructure of the samples. It was beneficial to include quarry waste as a filler aggregate in durability and mechanical properties. The compact matrix was demonstrated by microstructural analysis of the manufactured specimens. The geopolymer mortars immersed in sodium sulfate showed less strength reduction and deterioration than magnesium sulfate, indicating that magnesium sulfate is more aggressive than sodium sulfate. Therefore, it is concluded that using waste dust interrogation with partial replacement of river sand with fly ash-based geopolymers has satisfactory results in terms of durability properties of freeze-thaw and sulfate resistance.

A Study on Performance Evaluation of Early-age Concrete with EOS Fine Aggregate and GGBFS (EOS 잔골재 및 GGBFS를 혼입한 초기재령 콘크리트의 성능 평가에 관한 연구)

  • Kwon, Seung Jun;Cho, Sung Jun;Lim, Hee Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • Many researches on alternative materials as construction materials is continuing by recycling industrial byproducts due to shortage of sitereclamation and natural aggregates. In this paper, engineering properties in early-aged OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete are evaluated with EOS aggregate replacement. The related experiments were carried out with 0.6 of water to binder ratio, three levels of EOS replacement ratios (0%, 30% and 50%) for fine aggregate, and two levels of cement replacement with GGBFS (0% and 40%). Several tests such as slump air content, and unit mass measurement are performed for fresh concrete, and compressive strength and diffusion coefficient referred to NT BUILD 492 method are measured for hardened concrete. Through the tests, it was evaluated that the compressive strength in concrete with EOS aggregate increased to 3 days and 7 days but slightly decreased at the age of 28 days. In the accelerated chloride penetration test, GGBFS concrete showed reduced diffusion coefficients by 60 - 67% compared with OPC concrete. The lowest chloride diffusion coefficient was evaluated in the 50% replacement with EOS aggregate, which showed an applicability of EOS aggregate to concrete production.

Drying Shrinkage and Durability of Concrete Using Fine River Sand (하천세사를 사용한 콘크리트의 건조수축 및 내구성)

  • Bae, Suho;Jeon, Juntai;Kwon, Soonoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • The purpose of this research is to estimate the drying shrinkage and durability of concrete using the fine river sand to utilize it actively as an alternative aggregate for concrete. For this purpose, the fine river sand samples were collected at the mid and down stream of main stream of Nakdong-River, and then the concrete specimens using the fine river sand were made according to strength level. After obtaining relation equation between compressive strength and cement-water ratio from the mix experiment result, the concrete specimens using different fine river sand were made for the specified concrete strength of 35MPa, and then their drying shrinkage and durability such as the resistance to freeze and thaw and carbonation were evaluated. It was observed from the test result that the durability of concrete using fine river sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine river sand with small fineness was comparatively larger than that of concrete using reference sand.

The Quality of Crushed Sand by Dry Production Process and Its Influence on Properties of Concrete (건식공정으로 생산한 부순 모래의 품질 및 콘크리트 특성에 미치는 영향)

  • Park, Cho-Bum;Baek, Chul-Woo;Kim, Ho-Su;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.415-423
    • /
    • 2006
  • As the shortage of natural & good quality aggregate for concrete, it is needed development of alternative aggregate. At the present time, the crushed sand is widely used among the alternation aggregate, and the usage of crushed sand will be increased more and more. Generally, crushed sud is produced with wet process in domestic, but some manufacturing companies which are handicapped with local restrict are produced by dry process. In this study, analyzing the facilities of dry crushed sand, the quality properties of dry crushed sand was done by Korean Industrial Standards. Based on the quality results of dry crushed sand, the experiment of concrete with the dry crushed sand which is substitute for sea sand was done. As the results of basic qualities, the amount of 0.08 mm sieve passing ratio was over KS criteria, and the fineness modulus was higher than sea sand, and the other physical properties of dry crushed sand was similar to sea sand. The results of concrete experiment, according to the substitutive ratio of dry crushed sand is increased, the slump and air content of concrete was decreased by increase of fine particles of dry crushed sand, and the unit weight content, compressive & tensile strength of concrete were increased on the contrary. The physical properties of concrete used dry crushed sand were showed same tendency without relation to W/B. Consequently, if the fine particle contents of dry crushed sand was lower, it is judged that dry crushed sand is no problem to use for concrete aggregate and the amount of usage will be increased.