• Title/Summary/Keyword: Alloys

Search Result 4,352, Processing Time 0.03 seconds

The Effect of Repeated Firing on the Color Difference of a Metal-Ceramic System with Different Porcelain Powder (다른 특성을 가지는 도재가 반복소성에 따라 색조변화에 미치는 영향)

  • Hwang, Jae-Sun
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • The goal of esthetic restoration is to achieve morphologic, optical, and biologic acceptance. Creation of a natural looking ceramic restoration, which blends harmoniously with surrounding dentition, is not always achieved. A successful color match is an important aspect of any esthetic dental restoration. Since natural enamel has inherent translucency, it is important that ceramic restorations reproduce the translucency and color of the natural teeth. However, the final color match of porcelain crowns to adjacent natural dentition remains some problem. Difficulties related to color matching arise from the structural differences that exist between metal ceramic crowns and natural teeth, the limited range of available ceramic shades, inadequate shade guides, different types of metal alloys, repeated firing, the condensation technique, and varying compositions of ceramic materials. Many factors contribute to the esthetic success of dental restoration: optical properties such as color and its elements of hue, value, and chroma; translucency and opacity; light transmission and scattering; and metamerism and fluorescence. The purpose of this study was to determine the color changes of metal-ceramic system with different veneering porcelain powder after repeated firing. The objectives of this in vitro study were to measure the lightness($L^*$), chromaticity($a^*$), chromaticity($b^*$), chroma($C^*$), hue(h), reflectance(%), color difference(${\Delta}E$). The following conclusions were obtained: 1. An increase in the number of firings resulted in decrease in lightness($L^*$) but increase in chromacticity($a^*$) with all porcelain. After the second sintering resulted in decrease in chromacticity($b^*$) with opaque-dentin porcelain and dentin porcelain but in increase with enamel porcelain and translucency porcelain. And after the second sintering resulted in decrease in chroma($C^*$) with opaque-dentin porcelain and dentin porcelain, but on the whole side in decrease with enamel porcelain and translucency porcelain. 2. After the second firing, a increase in the number of firings resulted in decrease reflectance(%) in all wavelength. 3. There were noticeable color differences(${\Delta}E$) between first sintering and multiple firings(dentin porcelain: 5.29~8.15, opaque-dentin porcelain: 4.83~8.2, enamel porcelain: 8.93~13.15, translucency porcelain: 9.37~12.91), but the color difference(${\Delta}E$) after second sintering were down to 4.87 in all porcelain. 4. Given the NBS Criteria, a 'trace' was not found this study but a 'slight' was found 2-3, 3-5 in dentin porcelain, 2-3 in opaque-dentin porcelain, 3-5, 5-10 in enamel porcelain and translucency porcelain, a 'noticeable' was 2-5, 3-10, 5-10 in dentin porcelain and opaque-dentin porcelain, 2-3, 2-5, 3-10 in enamel porcelain 2-3, 3-10 in translucency porcelain, an 'appreciable' was 1-2, 1-3, 2-10 in dentin porcelain 1-2, 1-3, 2-10, 3-10 in opaque-dentin porcelain, 2-10 in enamel porcelain, 2-5, 2-10 in translucency porcelain, a 'much' was 1-5, 1-10 in dentin porcelain and opaque-dentin porcelain, 1-2, 1-3, 1-5 in enamel porcelain 1-2, 1-3, 1-5, 1-10 in translucency porcelain, a 'very much' was 1-10 in enamel porcelain.

  • PDF

Anisotropy Studies on Hot-forged $\gamma$-TiAl Alloys (열간단조된 $\gamma$-TiAl 합금의 이방성에 관한 연구)

  • Lee, Jae-Seung;Park, No-Jin;Kim, Seong-Jin;Kim, Seung-Eon;O, Myeong-Hun
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.629-635
    • /
    • 2000
  • The texture evolution during isothermal forging and subsequent heat treatment in Ti-48.5at%Al-0.6at%Mo alloy was investigated. Especially, in the present study, research interest was focused on the interrelation between lamellar volume fraction and textures varied with the change of heat-treated time and temperature. It was found that texture components having ND┴{302) and TD$\perp${100} with minor TD$\perp${111} were developed by isothermal forging. In addition, when the followed heat-treatment time and temperature increased from $1330^{\circ}C$/10h to $1350^{\circ}C$/20h respectively, both the lamellar volume fraction and the intensity of textures mentioned above also gradually increased. However, the tensile elongation at room temperature decreased oppositely, as the lamellar volume fraction increased. These results suggested that tensile properties of $\gamma$-TiAl with the nearly lamellar microstructure at room temperature were affected more strongly by the microstructural features such as lamellar volume fraction rather than by textures.

  • PDF

Evaluation of Mechanical Property for Pb-free Solder/Ni Plate Joints with Artificial Aging Time (인공시효시간에 따른 Ni 기판 Pb-free 솔더접합부의 기계적 물성평가)

  • Park, So Young;Yang, Sung Mo;Yu, Hyo Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.467-471
    • /
    • 2015
  • Thus far, solders used in electronics remain lead-based. Pb-free solutions in electronic components and systems are receiving increased attention in the semiconductor and electronics industries. Pb-free materials currently in used are Sn-37Pb, Sn-4Ag and Sn-4Ag-0.5Cu/Ni plate joints. In this study, solder alloys were used at high temperatures for artificial aging processing that was performed at $150^{\circ}C$ for 0hr, 100hr, 200hr, 400hr, 600hr and 1000hr. The SP test was conducted at $30^{\circ}C$ and $50^{\circ}C$. As a result, the maximum shear strength of all the specimens decreased with the increase in artificial aging time and temperature of the SP test. In addition, Pb-free solders showed higher total fracture energy compared with Sn-37Pb at high temperatures. The mechanical properties of Sn-4Ag-0.5Cu solder/Ni plate joints remained in excellent conditions in electronic parking systems at high temperatures.

Microscopic Analysis of Effect of Shot Peening on Corrosion Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 부식피로거동에 미치는 쇼트피닝 효과에 대한 미시적 분석)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1381-1389
    • /
    • 2012
  • The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppresses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints (용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성)

  • Lee, Chin Hyung;Shin, Hyun Seop;Park, Ki Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.693-700
    • /
    • 2012
  • In this study, the Charpy impact test along with metallurgical observation was conducted to evaluate low temperature impact toughness of structural steel welds with different welding processes to find out the optimal welding process to guarantee the required impact toughness at low temperatures. The welding processes employed are shield metal arc welding (SMAW) and flux cored arc welding(FCAW), which are commonly used welding methods in construction. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. To investigate the impact toughness at low temperatures of the steel welds, specimens were extracted from the weld metal and the heat affected zone. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The low temperature impact performance was evaluated based on the correlation between the absorbed energy and the microstructure. Analysis of the results showed that the optimal welding process to ensure the higher low temperature impact toughness of the HAZ and the weld metal is SMAW process using the welding consumable for steels targeted to low temperature use.

The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy (마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성)

  • Kim, Seong-Jong;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • The use of Al alloys instead of fiber-reinforced plastic(FRP) in ship construction has increased because of the advantages of Al-alloy ships, including high speed, increased load capacity, and ease of recycling. This paper describes the effects of probe diameter on the optimum friction stir welding conditions of 5456-H116 alloy for leisure ship, measured by a tensile test. In friction stir welding using a probe diameter of 5 mm under various travel and rotation speed conditions, the best performance was achieved with a travel speed of 61 mm/min. Using a probe diameter of 6 mm, rotation speeds of 170-210 rpm, and a travel speed of 15 mm/min produced a rough surface and voids because of insufficient heat input produced by the low rotation speed. At 500-800 rpm, chips were observed, although there were no voids, and the weld surface was excellent. However, at 1100-2500 rpm, many chips were produced due to excessive heat input. Heat effects were very evident on the bottom. For a travel speed of 15 mm/min, heat input caused by friction increased as the rotation speed increased. The mechanical characteristics were degraded by accelerated softening due to increasing heat input.

A Study on Characteristics of Alloy Materials through Reproduction Experiment of High-tin Bronze Mirror with Geometric Designs (고주석 청동정문경(靑銅精文鏡)의 재현실험을 통한 합금재료의 특성 연구)

  • Lee, In Kyeong;Jo, Young Hoon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.508-517
    • /
    • 2019
  • This study analyzed on alloys and by-product samples produced through the reproduction experiment of bronze mirror with geometric designs. The alloy ratio used in the first and second reproduction experiments was based on the analysis results of bronze mirror with geometric designs(Cu 61.68%, Sn 32.25%, Pb 5.46%) which is the national treasure No. 141. As a result of portable X-ray fluorescence analysis on the raw materials used in the reproduction experiment, the contents of copper raw materials were 98.85 wt% for Cu, tin raw materials were 99.03 wt% for Sn, and lead raw materials were 70.19 wt% for Pb, and 21.81 wt% for Sn. Sn and Pb were added 5 wt% more considering the evaporation amount of tin and lead during alloy melting. The result produced by the first reproduction experiment were 58.75 wt% for Cu, 36.87 wt% for Sn, 4.39 wt% for Pb, and the other result produced by the second reproduction experiment were 58.66 wt% for Cu, 35.89 wt% for Sn, and 5.50 wt% for Pb. The composition of the components was about 3.00 wt% in Cu and Sn respectively, and the microstructure was similar to the previous studies because the δ phase was observed mainly. The results of this study will be used as basic data for the materialistic characteristics of ancient bronze mirror in the future.

Evaluation of Mechanical Properties of AZ61 Magnesium Alloy Joints at various Welding Speeds (용접 속도에 따른 AZ61 마그네슘 합금 마찰교반용접부 기계적 특성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.278-284
    • /
    • 2017
  • In this study, the heat input conditions suitable for the AZ61 magnesium alloy were derived by controlling the welding speed at a constant rotational speed. In addition, from an economic point of view, industry demands higher welding speeds. Therefore,the effects of the welding speed were studied. The rotational speed applied was 800rpm, and the welding speed was varied from 100 to 500mm/min to evaluate the behavior of the welded regions. Tensile and hardness tests were conducted to examine the mechanical properties. Optical microscopy was used to observe the microstructure and soundness of the welded regions. Defects were observed at the welded region when the welding speed was more than400mm/min. As the welding speed increased, the grain size of the stir zone decreased and the hardness tended to increase proportionally. When the rotational speed was 800 rpm and the welding speed was 200mm/min and 300mm/min, there wereno defects in the welded region and excellent mechanical properties were recorded. In addition, the joint efficiencies were 100.5% and 101.2%, respectively, and the ultimate tensile strength was similar to that of the base metal. Fracture of the tensile specimen occurred between the advancing side and stir zone, and the fracture location coincided with the region where the hardness decreased temporarily.

Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method (화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구)

  • Lee, J.B.;Lee, H.J.;Kim, B.J.;Kwon, B.K.;Kim, S.J.;Lee, J.S.;Lee, C.Y.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • The properties of $2^{nd}$ generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor. Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of $Al_2O_3$ and $Y_2O_3$ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous $Y_2O_3$ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment(${\Delta}{\phi}$) of $6.2^{\circ}$.