Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method

J. B. Lee^a, H. J. Lee^a, B. J. Kim^a, B. K. Kwon^a, S. J. Kim^a, J. S. Lee^b, C. Y. Lee^b, S. H. Moon^c, H. G. Lee^a, G. W. Hong^{*,a}

^a Korea Polytechnic University, 2121 Jung Wang Dong, Siheung Shi, Gyeonggi-do, Korea ^bLeeschem International CO., LTD, Juan2dong, Namgu, Incheon, Korea ^c SuNAM Co., Ltd, Manan-gu, Anyang 430-817, Korea

(Received 21 March 2011 revised 20 April 2011 accepted 22 April 2011)

화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구 이종범^a, 이현준^a, 김병주^a, 권병국^a, 김선진^a, 이종수^b, 이철영^b, 문승현^c, 이희균^a, 홍계원^{a*}

Abstract

The properties of 2^{nd} generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor.

Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of Al₂O₃ and Y₂O₃ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous Y₂O₃ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment($\Delta \phi$) of 6.2°.

Keyword : Planarization, SUS310, Chemical Solution Deposition Method, Coated Conductor

*Corresponding author. Fax : +82 31 8041 1863 e-mail : gwhong@kpu.ac.kr I. 서 론

금속-세라믹 복합기판 위에 희토류 계 구리

산화물 REBa₂Cu₃O₇.(REBCO) 박막을 증착하여 제조되는 고온초전도선재인 Coated Conductor (CC)는 구리를 대신할 수 있는 새로운 전도체 로 각광 받고 있다. CC를 여러 전력기기 응용 에 활용하기 위해서는 단위선재에서의 높은 임 계전류, 낮은 교류손실, 외부 자기장 하에서 높 은 임계전류 밀도가 요구되는데, 이러한 기술 적인 특성은 현재 응용에 필요한 수준을 거의 만족시키고 있다. 그러나 상업화에 가장 중요 한 가격과 생산성에 있어서는 아직도 해결해야 할 점이 많이 남아 있으며 이를 위한 지속적인 연구가 필요한 실정이다 [1-3].

일반적으로 CC는 금속안정화층/초전도층/산 화물 버퍼층/금속모재 층으로 구성되어 있으며 여기서 사용되는 금속모재는 기계적 강도가 높 으며 고온에서 내부식성과 안정성이 높으며, 선 재 응용 시 교류손실을 적게 하기 위해서 비자 성체인 것이 유리하다. 이런 기술적 요구사항 을 만족시키는 금속소재로는 stainless steel과 Ni 계 합금인 Hastelloy가 대표적이다. Hastelloy 가 특성면에서 더 우수하여 이를 사용한 시제품이 개발되어 판매되고 있으나 높은 가격으로 인하 여 상대적으로 가격이 저렴한 stainless steel을 이용하고자 하는 연구가 많이 수행되고 있다.

우수한 특성의 CC제조를 위해서는 CC를 구 성하는 모든 박막층의 특성이 고루 향상되어야 하며 다양한 종류의 층 조합이 사용되는데 본 연구에서는 IBAD-MgO를 활용하는 조합에 대 하여 연구하였다. IBAD-MgO 조합에서 금속모 재의 다음층인 산화물 버퍼층은 세분하면 확산 방지층, IBAD 씨앗층, 그리고 이축정렬성을 제 공하는 IBAD-MgO와 homo epi-MgO 층, 그리고 lattice matching을 위한 LaMnO₃ 층 등으로 구성 된다.

CC의 가장 중요한 특성인 임계전류는 초전 도박막층의 이축정렬성에 크게 의존하며 따라 서 금속모재 층과 초전도 박막층의 사이에 형 성되는 IBAD 층의 특성이 매우 중요하다. 양 질의 IBAD 층 증착을 위해서는 우선 전해연마 공정으로 금속모재의 표면조도를 향상시킨다. 다음으로 고온에서의 초전도층의 증착 시, 금 속모재를 구성하는 금속원자의 확산을 방지하 기 위한 Al₂O₃ 확산방지층이 증착되고, 그 위 에는 양축정렬 된 기판을 형성하기 위한 IBAD 공정의 씨앗층인 Y2O3층이 증착된다.

즉, IBAD 공정을 하기 위해 전단계로 전해연 마공정 및 진공증착 공정(Al₂O₃, Y₂O₃)이 요구 되기 때문에 공정이 복잡해지며, 전해연마공정 은 생산성이 낮으며 전해액의 독성이 큰 대표 적인 수질오염물질을 발생시키는 공정이다. 이 를 극복하기 위한 연구로서 금속모재의 표면조 도를 향상시키면서, 확산방지와 IBAD 씨앗층 역할을 할 수 있는 화학용액코팅법(dip coating 법)이 최근 주목 받고 있다 [4, 5]. Y2O3 코팅용 액을 사용하는 화학용액 코팅법으로 금속모재 를 평탄화 시킬 경우, 반복적인 코팅과 열처리 로 상당한 두께의 박막층을 증착시켜 완벽한 확산방지역할까지 할 수 있으며 [6], 대면적에 서도 균일한 코팅이 용이해지기 때문에 간단하 면서도 생산성이 높으며, 전해연마공정을 생략 하여 친환경적인 공정이 될 수 있게 한다.

Fig. 1. (a)는 금속모재가 화학용액 코팅법으로 평탄화 되는 원리를 나타낸 그림이다. 화학용 액코팅법은 코팅과 열처리 공정이 수반되는데, 열처리 시 나타나는 수축현상이 약 85 % 정도 이며 이러한 수축이 평탄화에 기인하는 것이다. 즉 1회의 코팅-열처리 공정이 적용된다면 약 15 %의 정도의 표면조도가 좋아 지며, 코팅 횟 수와 평탄도의 관계를 수식으로 표현을 하면 식 (1)과 같다.

$$R_n = R_0 * (1 - t_1/t_0)^n$$
 (1)

여기서 R₀은 초기평탄도 t₀은 코팅 후 열처 리전의 두께, t₁은 코팅 후 열처리 후의 두께를 의미한다. 예를 들어 30 nm의 필름을 16회 코팅 한다면 2 nm 정도의 표면조도를 갖게 된다 [5]. 미국의 Superpower Inc. 사에서는 50 nm 정도 의 표면조도를 가지는 금속모재에 Y₂O₃를 15 회 dip-coating과 열처리를 반복 함으로서 표면 조도가 2 nm 정도로 향상된다는 보고를 한바 있으며 [4], 일본의 ISTEC에서는 Gd-Zr-O를 dip coating하여 금속모재를 평탄화 함으로서 CC제 조에 활용할 수 있다는 연구결과도 보고 한 바 있다 [5].

또한 화학적 용액법으로 평탄화된 금속모재 를 사용한 CC는 높은 임계전류와 장선재에서 의 균일한 임계전류특성을 가진다는 결과를 보 고한 바 있다. 이런 결과의 원인은 Fig. 1. (b)에 서 관찰 되듯이 코팅-열처리의 반복공정이 적 용되어 Y₂O₃ 층이 비교적 두껍게 코팅되기 때 문에, 금속모재에서 제2상이 형성하더라도 이 후의 고온증착 공정에 대하여 매우 안정적이기 때문이다 [6].

Fig. 1. (a) Mechanism of planarization of chemical solution coated substrate by 85 % shrinkage (b) interface image of chemical coated hastelloy by SEM [6].

본 연구에서는 Hastelloy 모재를 화학용액코 팅법으로 평탄화 [4-6] 시키는 것이 아니라, 가 격적인 면에서 경쟁력을 가질 수 있는 SUS310 을 금속모재로 사용하여 화학용액코팅법으로 평탄화를 시키려고 시도하였다.

코팅용액으로는 Y₂O₃ 전구용액이 사용되었으 며, 반복적인 코팅-열처리공정을 통하여 열처리 온도에 따른 표면조도 변화와 제2상생성에 대 해 조사하였다.

또한 열처리조건을 최적화 함으로서 최소의 코팅횟수로 표면조도를 향상시킬 수 있는 공정 변수를 찾고자 하였다. 그리고 화학용액코팅법 으로 제조된 Y₂O₃ 층이 IBAD 공정의 씨앗층의 역할을 할 수 있는지를 검증하기 위하여 IBAD -MgO 층을 증착 하였으며, 결정성 및 방향성 을 분석함으로서 씨앗층으로서의 특성을 검증 하였다.

Ⅱ. 실험 방법

Y₂O₃ 코팅용액은 Yttrium naphthenate, Y 7-13 %, 60 % w/w in toluene(Alfa Aesar)를 원료로 하여, 약 60 °C의 온도에서 점도조절을 위해 순 수한 toluene을 첨가하고 1시간 동안 mixing을 한 후 dip-coating 하였다. 금속모재인 SUS310은 아세톤 초음파세척으 로 표면을 세척한 다음 사용하였고, Fig. 2 (a)에 보이는 Dip Coating System에서 코팅-열처리공정 을 반복하였다. 열처리온도는 450~650 °C로 조 절하였고, 1회 열처리 시간은 5분이었다. 코팅된 층과 금속모재의 계면에 형성된 2상을 분석하 기 위하여 X-Ray Diffraction을 사용하여 2thetatheta scan을 하였으며, 코팅횟수와 열처리 온도 에 대한 표면조도의 영향을 알아보기 위하여 Scanning Probe Microscope를 사용하여 표면조도 를 분석하였다.

형성된 Y₂O₃ 층이 IBAD-MgO 층의 씨앗층의 역할을 할 수 있는지 검증하기 위하여 Fig. 2 (b) 와 같이 45°의 각도를 이루도록 설치된 ion source (Ion Tech Inc)를 사용하여 IBAD-MgO 층 을 증착 하였다. RF power는 400W, Ar⁺ 이온빔 에너지는 1000 eV로 증착하였다. 그리고 ion source를 끈 상태로 in-situ 공정으로 Homo Epitaxial MgO 층을 500 ℃에서 증착하였다. 증 착된 MgO 층의 결정성을 확인하기 위하여 X-Ray Diffraction을 사용하여 2theta-theta Scan, Phi-Scan을 하였다.

Fig. 2 (a) Dip coating system for Y_2O_3 coating on metal tape and (b) The deposition chamber for IBAD-MgO and Homo Epitaxial MgO layer.

III. 결과 및 고찰

코팅횟수에 따른 표면조도의 변화를 관찰하 기 위하여 SUS310 위에 코팅-열처리를 반복하 였으며, 열처리 온도는 450 ℃와 650 ℃에서 진 행하였다. Fig. 3 (a)는 코팅 전의 SUS310 모재의 표면조도를 측정한 사진인데, 650 ℃에서 15회 코팅-열처리가 반복된 코팅 후, 평균표면조도 값을 측정한 결과 Fig. 3. (b), (c)와 같이 45 nm 정도의 비교적 거친 표면조도를 나타내었다.

Fig. 3. Surface image of (a) SUS310 metal substrate before coating of Y_2O_3 , (b) and (c) 15 times coating-heat treatment at 650 °C, (d)and (e) 15 times coating-heat treatment at 450 °C.

이러한 현상은 비교적 높은 온도와 긴 열처 리시간에 의하여 금속모재가 쉽게 반응하여 제 2상이 형성 및 결정화 등에 의하여 거친 표면 조도특성을 보이는 것으로 사료된다.

반면 450 ℃에서 열처리를 한 결과, Fig. 3. (d), (e)와 보이는 것과 같이 2.2 nm 우수한 평균표 면조도를 형성하였는데, 이러한 결과는 비교적 낮은 온도에서 열처리 되어서 코팅된 막의 결 정화 및 금속모재로부터 제 2상이 발생하지 않 았기 때문이라고 생각된다.

Fig. 4. (a)는 코팅전의 SUS310의 표면사진이 고 (b)는 Y₂O₃ 1회 코팅한 후, 650 ℃에서 열처 리한 사진이다. 열처리를 비교적 고온에서 했 을 경우, Y₂O₃ 코팅표면에 금속모재로부터 제 2 상이 형성되는 현상을 관찰할 수 있었으며, 이 것을 (c)와 같이 XRD로 상 분석을 한 결과 고 온에서 열처리를 할 경우 제 2상인 Cr₂O₃가 발 생하는 것이 관찰되었다. 즉 고온에서 열처리 할 경우 고온에서의 안정성이 떨어진다는 것을 의미한다.

Fig. 4. (a) Digital Camera image of SUS310 substrate before coating of Y_2O_3 -heat treatment process, (b) after coating of Y_2O_3 -heat treatment at 650 °C and SPM analysis, (c) XRD analysis for various heat treatment condition.

초전도박막의 경우, 700 ℃ 정도 이상의 고온 에서 증착되기 때문에 고온에서 안정한 표면 및 계면특성이 요구되는데, 본 연구진은 초기 층의 열처리만 높게 진행하고 2차층부터의 열 처리는 저온에서 진행하는 Advanced Heat Treatment (AHT)공정을 함으로서 이 같은 문제 점을 해결하려고 하였다.

Fig. 5. (a) Surface roughness for the number of coating of Y_2O_3 layer on SUS310 and (b) Surface roughness image of 4 times coated SUS310.

Fig. 5. (a)는 AHT 공정을 적용 하지 않은 실 험결과와 적용한 실험결과를 보여준다. AHT 공 정을 적용 하지 않고 열처리를 450 ℃에서 진 행한 경우, 코팅 횟수에 따라 표면조도가 점차 좋아지는 현상이 확인되었으며, 15회 코팅 시 3 nm 표면조도 값을 보여주었다. 이러한 결과는 식 1과 비슷한 경향을 보여주었다.

하지만 AHT공정을 적용한 경우, 약 4번의 코팅-열처리 공정만으로도 1.8 nm 정도의 우수

한 표면조도를 얻을 수 있었다. 그 원인으로 초기층 코팅 후, 열처리가 고온에서 진행될 때, 금속모재로부터 수많은 제 2상들을 계면에 미 리 형성 함으로서 압연공정 시 이미 형성된 금 속모재의 큰 물결모양의 요동을 완화시키는 역 할을 하기 때문이라고 생각된다.

또한 이후의 열처리공정이 비교적 저온에서 진행되기 때문에 모든 열처리를 고온에서 한것 과 대조적으로 금속모재로부터 제 2상이 형성 하여 표면 거칠기를 거칠게 하는 현상은 관찰 되지 않았다. 이렇게 AHT 공정으로 만들어진 Y₂O₃는 계면에 대한 안정성 때문에 박리 및 장선화에 안정적일 것이라고 사료된다.

Fig. 6. (a) 2theta-theta scan and (b) phi scan of Homo Epitaxial MgO/IBAD-MgO/4 times $Y_2O_3/SUS310$ by XRD.

Fig. 6은 AHT 공정으로 Y_2O_3 를 4회 코팅 한 샘플에 IBAD-MgO 층과 Homo Epitaxial MgO 층을 순차적으로 증착한 뒤, XRD로 2theta-theta 스캔과 phi-scam을 한 결과이다. (a)의 결과에서 는 제 2상없이 MgO(001) 성장이 잘 된 것을 볼 수 있었으며 (b)에서는 a-b면 내 배향성($\Delta \phi$)이 우수한 것을 확인하였다. 이러한 결과들은 금속 모재를 Y_2O_3 층을 반복적인 화학적 용액 코팅 방법으로 코팅-열처리하여 평탄화시켰을 경우, 코팅된 Y_2O_3 층이 IBAD 공정의 씨앗층의 역할 을 충분히 할 수 있다는 것을 증명해 준다.

IV. 결 론

본 연구의 결론은 다음과 같다.

1. Y₂O₃ 코팅-열처리공정(650 ℃)공정을 적용하 였을 경우, 공정횟수가 증가함에 따라 표면 조도는 좋아지지 않는다. 그 이유는 코팅박 막의 결정성 및 금속모재로부터 제 2상 형 성 때문이라고 사료된다.

- Y₂O₃ 코팅-열처리공정(450 ℃)공정을 적용하 였을 경우, 공정횟수가 증가함에 따라 표면 조도는 좋아진다. 그 이유는 비교적 저온에 서 열처리 되기 때문에, 박막의 결정화 및 금속모재로부터 제 2상 형성이 없기 때문이 라고 사료된다.
- 3. AHT 공정을 적용하였을 경우, 4회 코팅-열처 리만으로도 우수한 표면조도 값을 보여주었다. 또한 1차 층에서 고온열처리를 진행하기 때 문에 박리 및 장선에 대한 안정성이 뛰어날 것으로 사료된다.
- 4. AHT 공정을 적용한 Y₂O₃ 층 위에 IBAD-MgO층을 중착하여 우수한 결정성 및 배향 성을 확인하였으며, 이는 AHT 공정을 적용 한 Y₂O₃ 층이 씨앗층으로서 역할을 충분히 할 수 있음을 의미한다.

감사의 글

본 연구는 2010년도 지식경제부, 전력산업기 술개발사업(KETEP 201010202000340)의 지원으 로 수행되었습니다.

참고 문헌

- V. Selvamanickam, Y. Xie, J. Reeves, in : Superconductivity for Electric System DOE 2007 Annual Peer Review, August (2007).
- [2] T. Haugan, P.N. Barnes, R. Wheeler, F.Meisenkothen, M.Sumption, Nature 430(2004) 867.
- [3] M.D. Sumption, E. Lee, C.B. Cobb, P.N. Banes, T.J Haugan, J.Tolliver, C.E. Oberly, E.W. Collings, IEEE Tans. Appl. Super. 13 (2003) 3553.
- [4] Vladimir Matias, Quanxi Jia, in : Annual Superconductivity for Electric Systems Peer Review, July (2008).
- [5] Y. Takahashi, Mtokumaru, T. Ito, M. Yoshizumi, Y. Izumi, Y. Shiohara, Y. Aoki, T. Aoki, T. Hasegawa "Low Cost RE-Zr-O Nucleation layer by MOD process

on hastelloy tapes for highly In-Plane Textured IBAD-MgO", 23 rd international Symposium on super conductivity conference, WTP28, Tsukuba, Japan (2010).

[6] Leonardo Civale, Yi-Tuan Xie, Superconductivity for Electric power System Annual Peer review, Alexandria, VA, August (2009).