• Title/Summary/Keyword: Alloys

Search Result 4,359, Processing Time 0.029 seconds

Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering (방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성)

  • Lim, Chae Hong;Park, Jong Seok;Yang, Sangsun;Yun, Jung-Yeul;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

Quantitative Surface Analysis of Co-Ni and Au-Cu alloys by XPS and SIMS (XPS와 SIMS에 의한 Co-Ni과 Au-Cu 합금표면 정량분석 연구)

  • 김경중;문대원;이광우
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.106-114
    • /
    • 1992
  • Abstract-Quantitative surface analysis of Co-Ni and Au-Cu alloys by XPS and SIMS was studied. For Co-Ni alloy, quantitative XPS analysis could be done within 1-2% relative error with pure element standards without any correction. For Au-Cu, quantitative XPS analysis was not possible without any correction. But it could be done with standard alloys of various composition within 1-2% relative error. Without standard alloys, Au-Cu alloys could be analyzed by XPS within 10% relative error with pure element standards. For SIMS analysis of Co-Ni alloys, the relative secondary ion yields of Co+/Nit has linear relation with ratio of each composition so that quantitative SIMS analysis was possible for Co-Ni alloys. Preliminary results of XPS round robin test of VAMAS-SCA Japan Project are given.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Corrosion Resistance Evaluation in the Co-Cr Alloys for the Full and Removable Partial Denture Metal Frameworks and the Porcelain-fused-to-metal Crown (총의치와 국소의치 금속의치상용 코발트-크롬 합금과 금속소부도재관용 코발트-크롬 합금의 부식저항성 평가)

  • Park, Soo-Chul;Choi, Sung-Mi;Kang, Ji-Hun
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.237-245
    • /
    • 2012
  • Purpose: This study was conducted to evaluate the corrosion resistance of metal ions of alloys and use the results as the dental health data. These were performed by examining the corrosion levels of Co-Cr alloys for the full and removable partial denture metal frameworks and porcelain-fused-to-metal crown, among the dental casting nonprecious alloys. Methods: The alloy specimens (N = 10) were manufactured in $15mm{\times}10mm{\times}1.2mm$ and stored in two types of corrosive solutions at $37^{\circ}C$ for seven days. The metal ions were quantitatively analyzed using the Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: Of the three Co-Cr alloys, the Co ion concentration of the porcelain-fused-to-metal alloy was 1.512 ${\mu}g/cm^2$, which indicated the highest metal ion dissolution. The metal corrosion was higher in the more acidic pH 2.2 solution compared with the pH 4.4 solution. In all three Co-Cr alloys, Co ion dissolution was predominant in the two corrosive solutions. Conclusion: The corrosion resistance of the three Co-Cr alloys was high, indicating a good biocompatibility.

Grindability of Ti-10%Zr-X%Cr(X=0,1,3) Alloys for Dental Applications (치과용 Ti-10%Zr-X%Cr(X=0,1,3)합금의 연삭성)

  • Jung, Jong-Hyun;Shin, Jae-Woo
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Purpose: The grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys in order to develop Ti alloys for dental applications with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-10%Zr-X%Cr(X=0,1,3) alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at one of the four rotational speeds of the wheel (12000, 18000, 25000 or 30000rpm) by applying a force(100gf). Grindability was evaluated by measuring the amount of metal volume removed per minute(grinding rate) and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared the results with those of cp-Ti(commercially pure titanium) Results: It was observed that the grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys increased with an increase in the Cr concentration. More, they are higher than cp-Ti, particularly the Ti-10%Zr-3%Cr alloy exhibited the highest grindability at all rotational speeds except 12000rpm. There was significant difference in the grinding rate and grinding ratio between Ti-10%Zr-3%Cr alloy and cp-Ti at all rotational speeds(p<0.05). Conclusion: The Ti-10%Zr-3%Cr alloy exhibited better grindability at high rotational speeds, great potential for use as a dental machining alloy.

Dental Co-Cr alloys fabricated by selective laser melting: A review article (선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰)

  • Kang, Hyeon-Goo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.248-260
    • /
    • 2021
  • Cobalt-chromium alloys are used to fabricate various dental prostheses, and have advantages of low cost and excellent mechanical properties compared to other alloys. Recently, selective laser melting, which is an additive manufacturing method, has been used to overcome the disadvantages of the conventional fabrication method. A local rapid heating and cooling process of selective laser melting induces fine microstructures, grain refinement, and reduction of porosities of the alloys. Therefore, it can improve mechanical properties compared to the alloys fabricated by the conventional method. On the other hand, layering process and rapid heating and cooling cause accumulation of a large amount of residual stresses that can adversely affect the mechanical properties. A heat treatment for removing residual stresses through recovery and recrystallization process caused complicated changes in mechanical properties induced by phase transformation, precipitate and homogenization of the microstructures. The purpose of this review was to compare the manufacturing methods of Co-Cr alloys and to investigate the characteristics of Co-Cr alloys fabricated by selective laser melting.

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti-6Al-4V Prepared by Direct Energy Deposition

  • Byun, Yool;Lee, Sangwon;Seo, Seong-Moon;Yeom, Jong-taek;Kim, Seung Eon;Kang, Namhyun;Hong, Jaekeun
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1213-1220
    • /
    • 2018
  • The effects of Cr and Fe addition on the mechanical properties of Ti-6Al-4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior ${\beta}$ phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti-6Al-4V resulted in a partially melted Ti-6Al-4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti-33Fe) and the Ti-6Al-4V powder, which induced the formation of a thick liquid layer surrounding Ti-6Al-4V. The ductility of Fe-added Ti-6Al-4V was thus poorer than that of Cr-added Ti-6Al-4V.

High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum

  • Jia, Peng;Zhang, Jinyang;Geng, Haoran;Teng, Xinying;Zhao, Degang;Yang, Zhongxi;Wang, Yi;Hu, Song;Xiang, Jun;Hu, Xun
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1262-1274
    • /
    • 2018
  • The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced $LaBi_2$ phase and the change of the shape of $LaBi_2@Bi$ droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.

A comprehensive evaluation of Mg-Ni based alloys radiation shielding features for nuclear protection applications

  • M.I. Sayyed;K.A. Mahmoud;Faras Q. Mohammed;Kawa M. Kaky
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1830-1835
    • /
    • 2024
  • The current study aims to study the impacts of the substitution of magnesium with nickel concentrations on physical and γ-ray shielding capacity of magnesium alloys. The density of the magnesium alloys under study is varied from 3.677 g/cm3 to 5.652 g/cm3, with raising the nickel content from 26.7 wt% to 54.8 wt% and reducing the magnesium concentration from 72.6 wt% to 44.2 wt%, respectively. Additionally, the examination of the γ-ray shielding capacity using the Monte Carlo simulation code shows that the substitution of magnesium by nickel content in the magnesium alloys was associated with an enhancement in the γ-ray shielding capacity, where the linear attenuation coefficient for the studied alloys was enhanced by 53.22 %, 52.45 %, and 52.52 % at γ-ray energies of 0.662 MeV, 1.252 MeV, and 1.408 MeV, respectively, with raising the nickel concentration from 26.7 wt% to 54.8 wt%. Simultaneously, the half-value thickness for magnesium alloys was reduced from 2.47 cm to 1.62 cm (at gamma ray energy of 0.662 MeV), from 3.39 cm to 2.22 cm (at gamma ray energy of 1.252 MeV), and from 3.60 cm to 2.36 cm (at gamma ray energy of 1.408 MeV), raising the nickel concentration from 26.7 wt % to 54.8 wt%, respectively. The study shows that the substitution of magnesium for nickel greatly enhanced the radiation shielding capacity of the magnesium alloys.

A Study on the Characteristics of Martensitic Transformation Behaviors in In-X(X=Pb,Sn) Alloys (In-X(X=Pb,Sn) 합금의 마르텐사이트변태거동 특성에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.233-238
    • /
    • 2010
  • The phase transformations and the shape memory effect in In-rich Pb alloys and In rich-Sn alloys have been studied by means of X-ray diffractometry supplemented by metallographic observations. The alloys containing 12~15 at.%Pb transform from the ${\alpha}_2$ (fct) phase to the ${\alpha}_1$ (fct) phase by way of an intermediate phase (m phase) on cooling. The results of X-ray diffraction show that the metastable intermediate phase is observed both on cooling and heating, and has a face-centered orthorhombic (fco) structure. It is concluded that the ${\alpha}_1{\rightleftarrows}{\alpha}_2$ transformation is expressed by the ${\alpha}_1{\rightleftarrows}m{\rightleftarrows}{\alpha}_2$ transformation both on usual cooling and heating with the rate more than $8{\times}10^{-3}$ K/s. The $m{\rightleftarrows}{\alpha}_2$ transformation takes place with a mechanism involving macroscopic shear and are of diffusionless (martensitic) type. The temperature hysteresis in the two transformations is 10~13 K between the heating and cooling transformations. The alloys containing 0~11 at.%Sn are -phase solid solutions with a face centered tetragonal structure (c/a > 1) at room temperature, the axial ratio increasing continuously with tin content. The In-(11~15) at.%Sn alloys are mixtures of ${\alpha}$ and ${\beta}$ phases, the ${\beta}$ phase having a f. c. tetragonal structure (c/a < 1). The alloys containing more than 15 at.%Sn are ${\beta}$-phase solid solutions. The In-(12.9~15.0) at.%Sn alloys show a shape memory effect only when quenched to the temperature of liquid nitrogen, although their effect becomes weak and finally disappears after keeping at room temperature for a long time. The ${\beta}{\rightarrow}{\alpha}^{\prime}$ phase transformation is of the diffusionless (martensitic) type, and takes place between 330 K at 12.9 at.%Sn and 150 K at 14.5 at.%Sn. The hysteresis of transformation temperatures on heating and cooling is considerably large (29~40 K), depending on the composition. Both In-Pb and In-Sn alloys showed distinct the shape memory effects.