DOI QR코드

DOI QR Code

Dental Co-Cr alloys fabricated by selective laser melting: A review article

선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰

  • Kang, Hyeon-Goo (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University)
  • 강현구 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소)
  • Received : 2020.11.12
  • Accepted : 2021.01.20
  • Published : 2021.04.30

Abstract

Cobalt-chromium alloys are used to fabricate various dental prostheses, and have advantages of low cost and excellent mechanical properties compared to other alloys. Recently, selective laser melting, which is an additive manufacturing method, has been used to overcome the disadvantages of the conventional fabrication method. A local rapid heating and cooling process of selective laser melting induces fine microstructures, grain refinement, and reduction of porosities of the alloys. Therefore, it can improve mechanical properties compared to the alloys fabricated by the conventional method. On the other hand, layering process and rapid heating and cooling cause accumulation of a large amount of residual stresses that can adversely affect the mechanical properties. A heat treatment for removing residual stresses through recovery and recrystallization process caused complicated changes in mechanical properties induced by phase transformation, precipitate and homogenization of the microstructures. The purpose of this review was to compare the manufacturing methods of Co-Cr alloys and to investigate the characteristics of Co-Cr alloys fabricated by selective laser melting.

코발트-크롬 합금은 다양한 치과보철물 제작에 이용되고 있고, 다른 합금에 비해 저렴한 가격과 우수한 기계적 특성이 장점이다. 최근, 기존 제작 방식의 단점을 극복하기 위해 적층제조 방식인 선택적 레이저 용융 방법이 보철물 제작에 이용되고 있다. 선택적 레이저 용융 방법의 공정 중 급속 가열과 냉각 과정은 제작된 합금의 미세구조와 결정립을 미세화하고, 기포를 감소시켜 기존 제작 방식에 의한 합금에 비해 기계적 특성을 향상시킨다. 반면, 적층과 급속 가열 및 냉각은 다량의 잔류응력 축적을 초래하는데, 추후 기계적 특성에 악영향을 미칠 수 있다. 따라서, 잔류응력을 제거하기 위해 주로 열처리를 시행하고, 회복과 재결정화에 의한 잔류응력의 감소뿐만 아니라 상변태, 석출물 및 미세구조의 균질화가 동반되어 기계적 특성의 복잡한 변화가 나타난다. 본 문헌고찰에서 코발트-크롬 합금의 제작 방식 비교 및 선택적 레이저 용융 방법으로 제작된 합금의 특징에 대해 알아보고자 한다.

Keywords

References

  1. Tulga A. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping. J Prosthet Dent 2018;119:643-9. https://doi.org/10.1016/j.prosdent.2017.05.009
  2. Kim HR, Jang SH, Kim YK, Son JS, Min BK, Kim KH. Microstructures and mechanical properties of CoCr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials (Basel) 2016;9:596. https://doi.org/10.3390/ma9070596
  3. Suleiman SH, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand 2013;71:1280-9. https://doi.org/10.3109/00016357.2012.757650
  4. Al Jabbari YS. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. J Adv Prosthodont 2014;6:138-45. https://doi.org/10.4047/jap.2014.6.2.138
  5. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D. A novel CAD/CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag 2014;13:446-52.
  6. Hedberg YS, Qian B, Shen Z, Virtanen S, Wallinder IO. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent Mater 2014;30:525-34. https://doi.org/10.1016/j.dental.2014.02.008
  7. Konieczny B, Szczesio-Wlodarczyk A, Sokolowski J, Bociong K. Challenges of Co-Cr alloy additive manufacturing methods in dentistry - the current state of knowledge (systematic review). Materials (Basel) 2020;13:3524. https://doi.org/10.3390/ma13163524
  8. Takaichi A, Suyalatu, Nakamoto T, Joko N, Nomura N, Tsutsumi Y. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 2013;21:67-76. https://doi.org/10.1016/j.jmbbm.2013.01.021
  9. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 2014;30:e79-88.
  10. Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 2015;24:303-12. https://doi.org/10.1111/jopr.12268
  11. Lee DH, Lee BJ, Kim SH, Lee KB. Shear bond strength of porcelain to a new millable alloy and a conventional castable alloy. J Prosthet Dent 2015;113:329-35. https://doi.org/10.1016/j.prosdent.2014.09.016
  12. Revilla-Leon M, Sadeghpour M, Ozcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry. J Prosthodont 2020;29:579-593. https://doi.org/10.1111/jopr.13212
  13. Bae EJ, Kim JH, Kim WC, Kim HY. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering. J Adv Prosthodont 2014;6:266-71. https://doi.org/10.4047/jap.2014.6.4.266
  14. Ayyildiz S, Soylu EH, Ide S, Kilic S, Sipahi C, Piskin B. Annealing of Co-Cr dental alloy: effects on nanostructure and Rockwell hardness. J Adv Prosthodont 2013;5:471-8. https://doi.org/10.4047/jap.2013.5.4.471
  15. Zhou Y, Sun Q, Dong X, Li N, Shen ZJ, Zhong Y. Microstructure evolution and mechanical properties improvement of selective laser melted Co-Cr biomedical alloys during subsequent heat treatments. J Alloys Compd 2020;840:155664. https://doi.org/10.1016/j.jallcom.2020.155664
  16. Giacchi JV, Morando CN, Fornaro O, Palacio HA. Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys. Mater Charact 2011;62:53-61. https://doi.org/10.1016/j.matchar.2010.10.011
  17. Kaiser R, Williamson K, O'Brien C, Ramirez-Garcia S, Browne DJ. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. J Mech Behav Biomed Mater 2013;24:53-63. https://doi.org/10.1016/j.jmbbm.2013.04.013
  18. Krawczyk MB, Krolikowski MA, Grochala D, Powalka B, Figiel P, Wojciechowski S. Evaluation of surface topography after face turning of CoCr alloys fabricated by casting and selective laser melting. Materials (Basel) 2020;13:2448. https://doi.org/10.3390/ma13112448
  19. Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent 2018;120:617-23. https://doi.org/10.1016/j.prosdent.2017.11.015
  20. Lewis AJ. Radiographic evaluation of porosities in removable partial denture castings. J Prosthet Dent 1978;39:278-281. https://doi.org/10.1016/S0022-3913(78)80095-X
  21. Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R. Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Materialia 2003;51:1651-62. https://doi.org/10.1016/S1359-6454(02)00567-0
  22. Liu Y, Yang Y, Mai S, Wang D, Song C. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des 2015;87:797-806. https://doi.org/10.1016/j.matdes.2015.08.086
  23. Xin XZ, Chen J, Xiang N, Wei B. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell Biochem Biophys 2013;67:983-90. https://doi.org/10.1007/s12013-013-9593-9
  24. Santos CD, Habibe AF, Simba BG, Lins JFC, Freitas BXd, Nunes CA. CoCrMo-base alloys for dental applications obtained by selective laser melting (SLM) and CAD/CAM milling. Mat Res 2020;23. https://doi.org/10.1590/1980-5373-mr-2019-0599.
  25. Song B, Dong S, Deng S, Liao H, Coddet C. Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt Laser Technol 2014;56:451-60. https://doi.org/10.1016/j.optlastec.2013.09.017
  26. Sing SL, Huang S, Yeong WY. Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum. Mater Sci Eng A 2020;769:138511. https://doi.org/10.1016/j.msea.2019.138511
  27. Meacock CG, Vilar R. Structure and properties of a biomedical Co-Cr-Mo alloy produced by laser poweder. J Laser Appl 2009;21:88-95. https://doi.org/10.2351/1.3120214
  28. Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J Mater Process Technol 2014;214:2660-7. https://doi.org/10.1016/j.jmatprotec.2014.06.002
  29. Barucca G, Santecchia E, Majni G, Girardin E, Bassoli E, Denti L. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering. Mater Sci Eng C Mater Biol Appl 2015;48:263-9. https://doi.org/10.1016/j.msec.2014.12.009
  30. Qian B, Saeidi K, Kvetkova L, Lofaj F, Xiao C, Shen Z. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dent Mater 2015;31:1435-44. https://doi.org/10.1016/j.dental.2015.09.003
  31. Kajima Y, Takaichi A, Nakamoto T, Kimura T, Yogo Y, Ashida M, Doi H, Nomura N, Takahashi H, Hanawa T, Wakabayashi N. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting. J Mech Behav Biomed Mater 2016;59:446-58. https://doi.org/10.1016/j.jmbbm.2016.02.032
  32. Takaichi A, Kajima Y, Kittikundecha N, Htat HL, Wai Cho HH, Hanawa T. Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co-Cr-Mo alloys produced by selective laser melting. J Mech Behav Biomed Mater 2020;102:103496. https://doi.org/10.1016/j.jmbbm.2019.103496
  33. Seki E, Kajima Y, Takaichi A, Kittikundecha N, Cho HHW, Htat HL. Effect of heat treatment on the microstructure and fatigue strength of CoCrMo alloys fabricated by selective laser melting. Mater Lett 2019;245:53-6. https://doi.org/10.1016/j.matlet.2019.02.085
  34. Girardin E, Barucca G, Mengucci P, Fiori F, Bassoli E, Gatto A. Biomedical Co-Cr-Mo components produced by direct metal laser sintering. Mater Today 2016;3:889-97.
  35. Zhang M, Yang Y, Song C, Bai Y, Xiao Z. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J Alloys Compd 2018;750:878-86. https://doi.org/10.1016/j.jallcom.2018.04.054
  36. Wei W, Zhou Y, Liu W, Li N, Yan J, Li H. Microstructural characterization, mechanical properties, and corrosion resistance of dental Co-Cr-Mo-W alloys manufactured by selective laser melting. J Mater Eng Perform 2018;27:5312-20. https://doi.org/10.1007/s11665-018-3520-6
  37. Averyanova M, Bertrand P, Verquin B. Manufacture of Co-Cr dental crowns and bridges by selective laser melting technology. Virtual Phys Prototyp 2011;6:179-85. https://doi.org/10.1080/17452759.2011.619083
  38. Bartlett JL, Li X. An overview of residual stresses in metal powder bed fusion. Addit Manuf 2019;27:131-49.
  39. Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by selective laser melting (SLM): effect of laser energy density on microstructure, surface morphology, and hardness. J Manuf Process 2020;52:106-19. https://doi.org/10.1016/j.jmapro.2020.01.052
  40. Simson T, Emmel A, Dwars A, Bohm J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 2017;17:183-9.
  41. Mugwagwa L, Dimitrov D, Matope S, Yadroitsev I. Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf 2018; 21:92-99. https://doi.org/10.1016/j.promfg.2018.02.099
  42. Mengucci P, Barucca G, Gatto A, Bassoli E, Denti L, Fiori F. Effects of thermal treatments on microstructure and mechanical properties of a Co-CrMo-W biomedical alloy produced by laser sintering. J Mech Behav Biomed Mater 2016;60:106-17. https://doi.org/10.1016/j.jmbbm.2015.12.045
  43. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng 1997;238:219-274. https://doi.org/10.1016/S0921-5093(97)00424-3
  44. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016;61:315-60. https://doi.org/10.1080/09506608.2015.1116649
  45. Kajima Y, Takaichi A, Kittikundecha N, Nakamoto T, Kimura T, Nomura N, Kawasaki A, Hanawa T, Takahashi H, Wakabayashi N. Effect of heat-treatment temperature on microstructures and mechanical properties of Co-Cr-Mo alloys fabricated by selective laser melting. Mater Sci Eng A 2018;726:21-31. https://doi.org/10.1016/j.msea.2018.04.048
  46. Sing SL, Huang S, Yeong WY. Effect of solution heat treatment on microstructure and mechanical properties of laser powder bedfusion produced cobalt-28chromium-6molybdenum. Mater Sci Eng A 2020;769:138511. https://doi.org/10.1016/j.msea.2019.138511
  47. Kittikundecha N, Kajima Y, Takaichi A, Wai Cho HH, Htat HL, Doi H. Fatigue properties of removable partial denture clasps fabricated by selective laser melting followed by heat treatment. J Mech Behav Biomed Mater 2019;98:79-89. https://doi.org/10.1016/j.jmbbm.2019.06.010
  48. Wei W, Zhou Y, Sun Q, Li N, Yan J, Li H et al. Microstructures and mechanical properties of dental CoCr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures. Metall Mater Trans A 2020;51:3205-14. https://doi.org/10.1007/s11661-020-05719-y
  49. Kittikundecha N, Kajima Y, Takaichi A, Wai Cho HH, Htat HL, Doi H. Fatigue properties of removable partial denture clasps fabricated by selective laser melting followed by heat treatment. J Mech Behav Biomed Mater 2019;98:79-89. https://doi.org/10.1016/j.jmbbm.2019.06.010