Browse > Article
http://dx.doi.org/10.1007/s12540-018-0131-6

High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum  

Jia, Peng (School of Material Science and Engineering, University of Jinan)
Zhang, Jinyang (School of Material Science and Engineering, University of Jinan)
Geng, Haoran (School of Material Science and Engineering, University of Jinan)
Teng, Xinying (School of Material Science and Engineering, University of Jinan)
Zhao, Degang (School of Material Science and Engineering, University of Jinan)
Yang, Zhongxi (School of Material Science and Engineering, University of Jinan)
Wang, Yi (State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology)
Hu, Song (State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology)
Xiang, Jun (State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology)
Hu, Xun (School of Material Science and Engineering, University of Jinan)
Publication Information
Metals and materials international / v.24, no.6, 2018 , pp. 1262-1274 More about this Journal
Abstract
The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced $LaBi_2$ phase and the change of the shape of $LaBi_2@Bi$ droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.
Keywords
Immiscible alloys; Gravity segregation; Rare-earth; Casting; Heterogeneous nucleation; Shape effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti, A. Garcia, J. Alloys Compd. 689, 767-776 (2016)   DOI
2 Y.H. Wang, P.D. Xing, P. Wang, J.H. Liu, J. Alloys Compd. 656, 581-584 (2016)   DOI
3 J.D. Livingston, J. Appl. Phys. 39, 3836-3843 (1968)   DOI
4 J. Wecker, R.V. Helmolt, L. Schultz, K. Samwer, Appl. Phys. Lett. 62, 1985-1987 (1993)   DOI
5 C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Science 297, 990-993 (2002)   DOI
6 L.J. Zou, F. Chen, X. Chen, Y.J. Lin, Q. Shen, E.J. Lavernia, L.M. Zhang, J. Alloys Compd. 689, 6-14 (2016)   DOI
7 T. Nagase, Y. Umakoshi, J. Alloys Compd. 495, L1-L4 (2010)   DOI
8 P. Jia, J.Y. Zhang, H.R. Geng, Z.X. Yang, X.Y. Teng, D.G. Zhao, Y. Wang, M. Zuo, N.Q. Sun, J. Mol. Liq. 232, 457-461 (2017)   DOI
9 T. Nagase, Y. Umakoshi, J. Alloys Compd. 505, L43-L46 (2010)   DOI
10 W.L. Wang, Y.H. Wu, L.H. Li, N. Yan, B. Wei, J. Alloys Compd. 693, 650-657 (2017)   DOI
11 W.T. Kim, D.L. Zhang, B. Cantor, Mater. Sci. Eng. A 134, 1133-1138 (1991)   DOI
12 A. Castellero, G. Angella, M. Vedani, M. Baricco, J. Alloys Compd. 536, S148-S153 (2012)   DOI
13 R. Fedor, W. Smith, Method of Making a Fine Dispersion Aluminum Base Bearing, 3797084, U.S. Patent (1974)
14 J. He, J.Z. Zhao, H.L. Li, X.F. Zhang, Q.X. Zhang, Metall. Mater. Trans. A 39, 1174-1182 (2008)   DOI
15 A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, A. Garcia, Mater. Des. 31, 4584-4591 (2010)   DOI
16 W. Zhai, H.M. Liu, B. Wei, Mater. Lett. 141, 221-224 (2015)   DOI
17 T.X. Zheng, Y.B. Zhong, Z.S. Lei, W.L. Ren, Z.M. Ren, F. Debray, J. Alloys Compd. 623, 36-41 (2015)   DOI
18 Y.B. Zhong, T.X. Zheng, L.C. Dong, B.F. Zhou, W.L. Ren, J. Wang, Mater. Des. 100, 168-174 (2016)   DOI
19 N. Yan, Z.Y. Hong, D.L. Geng, W.L. Wang, B. Wei, J. Alloys Compd. 544, 6-12 (2016)
20 H. Xie, J.C. Wang, J.F. Fan, W.X. Hao, G.C. Yang, Hot Work. Technol. 4, 49-52 (2003)
21 I. Budai, G. Kaptay, Intermetallics 19, 423-425 (2011)   DOI
22 B.B. Schwarz, N. Mattern, O. Shuleshova, J. Eckert, Intermetallics 32, 250-258 (2013)   DOI
23 L.Y. Chen, J.Q. Xu, H. Choi, H. Konishi, S. Jin, X.C. Li, Nat. Commun. 5, 3879 (2014)   DOI
24 K. Zhang, X.F. Bian, Y.M. Li, C.C. Yang, H.B. Yang, Y. Zhang, J. Alloys Compd. 639, 563-570 (2015)   DOI
25 C.Z. Cao, L.Y. Chen, J.Q. Xu, J.Z. Zhao, M. Pozuelo, X.C. Li, Mater. Lett. 174, 213-216 (2016)   DOI
26 J. Jia, J.Z. Zhao, J.J. Guo, Y. Liu, Immiscible Alloy and Preparation Technology, 1st edn. (Harbin Institute of Technology Press, Harbin, 2002), pp. 56-64
27 Q. Sun, H.X. Jiang, J.Z. Zhao, J. He, Mater. Des. 91, 361-367 (2016)   DOI
28 T.N. Man, L. Zhang, N.K. Xu, W.B. Wang, Z.L. Xiang, E.G. Wang, Metals 6, 177 (2016)   DOI
29 L. Ratke, P.W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, 1st edn. (Springer, New York, 2002), pp. 239-242
30 L. Ratke, S. Diefenbach, Mater. Sci. Eng., R 15, 263-347 (1995)
31 Z. Chen, Y.Y. Tang, Q. Tao, Q. Chen, T. Liang, J. Alloys Compd. 662, 628-633 (2016)   DOI