Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.1.53

Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering  

Lim, Chae Hong (Division of Advanced Materials Engineering, Kongju National University)
Park, Jong Seok (Division of Advanced Materials Engineering, Kongju National University)
Yang, Sangsun (Powder Technology Department, Korea Institute of Materials Science)
Yun, Jung-Yeul (Powder Technology Department, Korea Institute of Materials Science)
Lee, Jin Kyu (Division of Advanced Materials Engineering, Kongju National University)
Publication Information
Journal of Powder Materials / v.24, no.1, 2017 , pp. 53-57 More about this Journal
Abstract
In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.
Keywords
Fe-Ni; Sintering; Powder metallurgy; High temperature; Oxidation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. L. Wulf, T. J. Carter and G. R. Wallwork: Corros. Sci., 9 (1969) 689.   DOI
2 A. D. Romig, Jr. and J. I. Goldstein: Metall. Trans. A, 11 (1980) 1151.   DOI
3 A. D. Romig, Jr. and J. I. Goldstein: Metall. Trans. A, 12 (1981) 243.   DOI
4 A. Zambon, B. Bandon, A. F. Norman and A. L. Greer, E. Ramous: Mater. Sci. Eng. A, 226 (1997) 119.
5 K. Eckler, F. Gartner, H. Assadi, A. F. Norman, A. L. Greer and D. M. Herlach: Mater. Sci. Eng. A, 226 (1997) 410.
6 A. Zambon, B. Badan, K. Eckler, F. Gartner, A. F. Norman, A. L. Greer, D. M. Herlach and E. Ramous: Acta. Mater., 46 (1998) 4657.   DOI
7 K. Rajanna and M. M. Naya: Mater. Sci. Eng. B, 77 (2000) 288.   DOI
8 K. H. Kim, H. C. Yoon, C. J. Choi and B. T. Lee: J. Korean Powder Metall. Inst., 11 (2004) 472.   DOI
9 I. Todd and A. T. Sidambe: Advances in Powder Metallurgy, I. Chang and Y. Zhao (Ed.), Woodhead Publishing, Oxford (2013) 109.
10 H. Ye, X. Y. Liu and H. Hong: Mater. Lett., 62 (2008) 3334.   DOI
11 M. Rafi Raza, F. Ahmad, M. A. Omar and R. G. German: J. Mater. Process. Tech., 212 (2012) 164.   DOI
12 A. Azizi and S. K. Sadrnezhaad: J. Alloy. Compd., 485 (2009) 484.   DOI
13 K. S. Son, J. H. Yoon, J. H. Kim, H. S. Kim, T. Narita and S. Hayashi: Korean J. Met. Mater., 40 (2002) 1083.
14 J. S. Oh, Y. M. Kong, B. K. Kim and K. A. Lee: J. Korean Powder Metall. Inst., 21 (2014) 55.   DOI
15 D. B. Lee and T. D. Nguyen : Korean J. Met. Mater., 47 (2009) 235.
16 G. C. Wood: Corros. Sci., 2 (1965) 173.
17 M. Kouncheva, G. Raichevski, St. Vitkova and M. Prazak: Surf. Coat. Tech., 31 (1987) 137.   DOI