DOI QR코드

DOI QR Code

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti-6Al-4V Prepared by Direct Energy Deposition

  • Byun, Yool (Advanced Metals Division, Titanium Alloys Department, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Sangwon (Advanced Metals Division, Titanium Alloys Department, Korea Institute of Materials Science (KIMS)) ;
  • Seo, Seong-Moon (High Temperature Materials Center, Korea Institute of Materials Science (KIMS)) ;
  • Yeom, Jong-taek (Advanced Metals Division, Titanium Alloys Department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Seung Eon (Advanced Metals Division, Titanium Alloys Department, Korea Institute of Materials Science (KIMS)) ;
  • Kang, Namhyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Hong, Jaekeun (Advanced Metals Division, Titanium Alloys Department, Korea Institute of Materials Science (KIMS))
  • Received : 2018.04.17
  • Accepted : 2018.05.15
  • Published : 2018.11.20

Abstract

The effects of Cr and Fe addition on the mechanical properties of Ti-6Al-4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior ${\beta}$ phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti-6Al-4V resulted in a partially melted Ti-6Al-4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti-33Fe) and the Ti-6Al-4V powder, which induced the formation of a thick liquid layer surrounding Ti-6Al-4V. The ductility of Fe-added Ti-6Al-4V was thus poorer than that of Cr-added Ti-6Al-4V.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry and Energy

References

  1. S. Zhang, X. Lin, J. Chen, W. Huang, Chin. Opt. Lett. 7, 498-501 (2009) https://doi.org/10.3788/COL20090706.0498
  2. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menon, S. Wiener, Additive Manufacturing of Metals: The Technology, Materials, Design and Production (Springer, London, 2017), p. 24
  3. F. Caiazzo, Opt. Laser Technol. 103, 193-198 (2018) https://doi.org/10.1016/j.optlastec.2018.01.042
  4. K. Zhang, S. Wang, W. Liu, X. Shang, Mater. Des. 55, 104-119 (2014) https://doi.org/10.1016/j.matdes.2013.09.006
  5. B. Baufeld, O.V.D. Biest, R. Gault, Mater. Des. 31, S106-S111 (2010) https://doi.org/10.1016/j.matdes.2009.11.032
  6. J. Yu, M. Rombouts, G. Maes, F. Motmans, Phys. Proc. 39, 416- 424 (2012) https://doi.org/10.1016/j.phpro.2012.10.056
  7. B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Acta Mater. 133, 120-133 (2017) https://doi.org/10.1016/j.actamat.2017.05.025
  8. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365-369 (2017) https://doi.org/10.1038/nature23894
  9. C. Schneider-Maunoury, L. Weiss, P. Acquier, D. Boisselier, P. Laheurte, Addit. Manuf. 17, 55-66 (2017) https://doi.org/10.1016/j.addma.2017.07.008
  10. Y. Itoh, H. Miura, T. Uematsu, T. Osada, K. Sato, J. Solid Mech. Mater. Eng. 3, 921-930 (2009) https://doi.org/10.1299/jmmp.3.921
  11. T. Ahmed, H. Rack, Mat. Sci. Eng. A 243, 206-211 (1998) https://doi.org/10.1016/S0921-5093(97)00802-2
  12. Y. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W. Huang, Acta Mater. 132, 82-95 (2017) https://doi.org/10.1016/j.actamat.2017.04.026
  13. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. StJohn, Mater. Sci. Forum 654-656, 1472-1475 (2010)
  14. P.A. Kobryn, S.L. Semiatin, J. Mater. Proc. Tech. 135, 330-339 (2003) https://doi.org/10.1016/S0924-0136(02)00865-8
  15. S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, J. Mater. Proc. Tech. 178, 135-142 (2006) https://doi.org/10.1016/j.jmatprotec.2006.03.155
  16. J. Hunt, Mater. Sci. Eng. 65, 75-83 (1984) https://doi.org/10.1016/0025-5416(84)90201-5
  17. M. Yan, P. Yu, Sintering Techniques of Materials (IntechOpen, 2015)
  18. P.A. Kobryn, S.L. Semiatin, JOM 53, 40-42 (2001)
  19. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, J. Alloy. Compd. 632, 505-513 (2015) https://doi.org/10.1016/j.jallcom.2015.01.256
  20. R.R. Boyer, G.E. Welsch, E.W. Collings (eds.), Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, 1994), p. 10
  21. C. Leyens, M. Peters, Titanium and Titanium Alloys (Wiley, New York, 2003)
  22. U. Diebold, Surf. Sci. Rep. 48, 53-229 (2003) https://doi.org/10.1016/S0167-5729(02)00100-0

Cited by

  1. Microstructure and properties of a novel wear- and corrosion-resistant stainless steel fabricated by laser melting deposition vol.35, pp.15, 2020, https://doi.org/10.1557/jmr.2020.70
  2. Influence of Direct Energy Deposition Parameters on Ti-6Al-4V Component’s Structure-Property Homogeneity vol.11, pp.6, 2021, https://doi.org/10.3390/met11060887
  3. Novel eutectoid Ti-5Ni alloy fabricated via direct energy deposition vol.200, pp.None, 2021, https://doi.org/10.1016/j.scriptamat.2021.113918
  4. The Effect of Decomposed Microstructure on Mechanical Properties of Additively Manufactured Ti-6Al-4V Alloy vol.39, pp.5, 2018, https://doi.org/10.5781/jwj.2021.39.5.9