• Title/Summary/Keyword: All solid polymer battery

Search Result 11, Processing Time 0.021 seconds

Oligo(EDOT)/PVdF Blend Electrolyte for All Solid Polymer Battery (전 고체 고분자 전지용 Oligo(EDOT)/PVdF 블렌드 전해질)

  • Kim, Min Su;Gwon, Hyeon-Ju;Jo, Nam-Ju
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.289-295
    • /
    • 2022
  • In this study, we intend to fabricate an all solid polymer battery with a reduced interfacial resistance between the solid electrolyte and the electrode by applying thiophene based polymers as both electrode and electrolyte materials. In order to minimize the interfacial resistance with the poly(3,4-ethylenedioxy thiophene) (PEDOT) based electrode, 3,4-ethylenedioxy thiophene (EDOT) oligomer was introduced into the solid electrolyte. Also, to improve the lithium salt dissociation ability of the EDOT oligomer [oligo(EDOT)] electrolyte, it was blended with poly(vinylidene fluoride) (PVdF). As a result, the ionic conductivity of the solid polymer electrolyte increased by introducing PVdF into the oligo (EDOT). From the result of evaluating the electrochemical properties of an all solid polymer battery, the interfacial resistance significantly decreased by introducing a thiophene based polymer to the electrode and electrolyte.

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

A Study on Direct Alcohol Fuel Cells for Portable Powers (휴대전원용 직접 알코올 연료전지의 특성에 관한 연구)

  • Yoon S. R.;Cha S. Y.;Oh I. W.;Hong S. A.;Ha H. Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.65-69
    • /
    • 2001
  • The potential change, and the crossover of alcohol in a liquid-feed solid polymer electrolyte fuel cell operating at atmosphere and room temperature was investigated. Alcohol crossover was generated from all the alcohol by using the fuel. The single-cell property of direct methanol fuel cell was higher than that of other alcohol species as $31mW/cm^2$ at 0.23 V at 4.5M of methanol.

Evaluations of Thermal Diffusivity and Electrochemical Properties for Lithium Hydride and Electrolyte Composites (리튬계 수소화물 전해질 복합막의 열확산 및 전기화학적 특성평가)

  • Hwang, June-Hyeon;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.429-434
    • /
    • 2022
  • There is ongoing research to develop lithium ion batteries as sustainable energy sources. Because of safety problems, solid state batteries, where electrolytes are replaced with solids, are attracting attention. Sulfide electrolytes, with a high ion conductivity of 10-3 S/cm or more, have the highest potential performance, but the price of the main materials is high. This study investigated lithium hydride materials, which offer economic advantages and low density. To analyze the change in ion conductivity in polymer electrolyte composites, PVDF, a representative polymer substance was used at a certain mass ratio. XRD, SEM, and BET were performed for metallurgical analyses of the materials, and ion conductivity was calculated through the EIS method. In addition, thermal conductivity was measured to analyze thermal stability, which is a major parameter of lithium ion batteries. As a result, the ion conductivity of LiH was found to be 10-6 S/cm, and the ion conductivity further decreased as the PVDF ratio increased when the composite was formed.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites (LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가)

  • HWANG, JUNE-HYEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Development of ionic liquid based solid state electrolyte and nanocarbon composite for all solid-state energy storage device (전고체형 에너지 저장 매체 제조를 위한 이온성 액체 기반의 고체 전해질과 탄소나노복합체 기반의 전극소재 개발)

  • Kim, Yong Ryeol;Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1253-1258
    • /
    • 2019
  • The solid-state electrolyte based on polymer is applicable to various electrochemical devices including supercapacitor, battery, sensor, actuator and has great attention to develop its ionic conductivity from conventional polymer electrolyte by uisng wide range of ionic liquids. The research about ion gel as a solid state electrolyte with the ionic liquid has focused on the wearable and flexible electronic device to use as the high electrical and electrochemical performances, mechanical strength of polymer. In this work, we have investigated and developed solid-state electrolyte based on the ionic liquid and polymer with enhanced ionic conductivity and stability.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.