Browse > Article
http://dx.doi.org/10.14478/ace.2022.1022

Oligo(EDOT)/PVdF Blend Electrolyte for All Solid Polymer Battery  

Kim, Min Su (School of Chemical Engineering, Pusan National University)
Gwon, Hyeon-Ju (School of Chemical Engineering, Pusan National University)
Jo, Nam-Ju (School of Chemical Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 289-295 More about this Journal
Abstract
In this study, we intend to fabricate an all solid polymer battery with a reduced interfacial resistance between the solid electrolyte and the electrode by applying thiophene based polymers as both electrode and electrolyte materials. In order to minimize the interfacial resistance with the poly(3,4-ethylenedioxy thiophene) (PEDOT) based electrode, 3,4-ethylenedioxy thiophene (EDOT) oligomer was introduced into the solid electrolyte. Also, to improve the lithium salt dissociation ability of the EDOT oligomer [oligo(EDOT)] electrolyte, it was blended with poly(vinylidene fluoride) (PVdF). As a result, the ionic conductivity of the solid polymer electrolyte increased by introducing PVdF into the oligo (EDOT). From the result of evaluating the electrochemical properties of an all solid polymer battery, the interfacial resistance significantly decreased by introducing a thiophene based polymer to the electrode and electrolyte.
Keywords
All solid polymer battery; Solid polymer electrolyte; Interfacial resistance; Ionic conductivity; Thiophene based polymer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. G. Kang and C. J. Lee, Solid polymer electrolyte for lithium-polymer secondary battery, Polymer Science and Technology, 14, 396-406 (2003).
2 A. R. Han, J. S. Shin, S. J. Park, and S. Kim, Preparation and electrochemical behaviors of polymer electrolyte based on PEO/PMMA containing Li ion, Korean Chem. Eng. Res., 47, 476-480 (2009).
3 J. M. Kim, J. M. Oh, J. Y. Kim, Y. G. Lee, and K. M. Kim, Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries, J. Korean Electrochem. Soc., 22, 87-103 (2019).   DOI
4 H. J. Shin, J. T. Kim, H. H. Lee, and H. K. Jeong, High-performance solid electrolyte material technology development trend for all-solid-state batteries, Trends in Metals & Materials Engineering, 33, 38-53 (2020).
5 K. S. Kim, Solid electrolyte and all-solid-state battery R&D trends to improve the safety of high-energy secondary batteries, Electrical & Electronic Materials, 30, 20-31 (2017).
6 D. Y. Joo, Current status and development tasks of domestic secondary battery industry KIET industrial economy, 3, 20-31 (2018).
7 Y. J. Lee, All-solid-state lithium secondary battery development trend and outlook, KDB Monthly Bulletin, 780, 16-34 (2020).
8 J. S. Kim, D. W. Lee, and J. H. Lee, Next-generation battery, Kiwoom Industry Analysis, 4, 3-56 (2019).
9 H. S. Kim, Post lithium-ion battery technology for next generation xEV, Auto Journal, 42, 35 (2020).
10 W. Liu, X. K. Zhang, F. Wu, and Y. Xiang, A study on PVdF-HFP gel polymer electrolyte for lithium-ion batteries, IOP Conf. Ser.: Mater. Sci. Eng., May 23-25, Guangzhou, China (2017).
11 P. Ball, H. Fullmann, and W. Heitz, Carbonates and polycarbonates from urea and alcohol, Angew. Chem. Int. Ed., 19, 718-720 (1980).   DOI
12 Y. J. Lee, Y. K. Jo, H. Park, H. H. Chun, and N. J. Jo, Solvent effect on ion hopping of solid polymer electrolyte, Mater. Sci. Forum, 544-545, 1049-1052 (2007).   DOI
13 F. Tran-Van, S. Garreau, G. Louarn, G. Froyer, and C. Chevrot, Fully undoped and soluble oligo(3,4-ehtylenedioxythiophene)s: Spectroscopic study and electrochemical characterization, J. Mater. Chem., 11, 1378-1382 (2001).   DOI
14 S. K. No, K. H. Choi, J. W. Kwak, and W. S. Ryu, Preparation and application of poly(vinyl alcohol) having various molecular parameters, Polymer Science and Technology, 15, 4-11 (2004).
15 M. K. Kim, Y. J. Lee, and N. J. Jo, The effect of HSAB principle on electrochemical properties of polymer-in-salt electrolytes with aliphatic polymer, Surf. Rev. Lett., 17, 63-68 (2010).   DOI
16 A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, US Patent, 5,296,318 (1994).
17 J. H. Shin and S. Passerini, PEO-LiN(SO2CF2CF3)2 polymer electrolytes, J. Electrochem. Soc., 151, A238-A245 (2004).   DOI
18 Z. Zhang and M. Wan, Composite films of nanostructured polyaniline with poly(vinyl alcohol), Synth. Met., 128, 83-89 (2002).   DOI
19 M. G. Han, S. K. Cho, S. G. Oh, and S. S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synth. Met., 126, 53-60 (2002).   DOI
20 H. Hwang, Electrochemical Analysis, 194-199, Freeacademy, Republic of Korea (2007).
21 J. H. Lee, C. H. Park, M. S. Park, and J. H. Kim, Poly(vinyl alcohol)-based polymer electrolyte membrane for solid-state supercapacitor, Membr. J, 29, 30-36 (2019).   DOI
22 C. Wu, S. Guo, L. Jia, S. Han, B. Chi, J. Pu, and L. Jian, Mechanistic insight into the individual ionic transportation in polymer electrolytes for use in dye-sensitized solar cell, RSC Adv., 3, 13968-13975 (2013).   DOI