• Title/Summary/Keyword: Alkaliphilic bacterium

Search Result 10, Processing Time 0.434 seconds

Restriction Fragment Fingerprint of an Alkaliphilic Micrococcus sp. Y-1 Genome by Pulsed-field Gel Electrophoresis

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1995
  • A genomic DNA of alkaliphilic bacterium, Micrococcus sp. Y-l, was analysed using the physical mapping method of pulsed-field gel electrophoresis (PFGE). Five restriction enzymes of Sspl, Hpal, Xbal, Ndel or EcoRI, which recognize the Adenine-Thymine-rich sequences of genomic DNA, were used for the generation of few (7 to 20) distinctly separate fragments, with average sizes in the range of 200~500 kb. However, the sites for Notl and SfiI, 8 base-recognizing enzymes, were highly frequent. The genome size of this strain was determined to be 4 mega base pairs (Mb) from restriction fragments separated by PFGE. This is the first case of restriction mapping in alkaliphilic bacterium.

  • PDF

Biochemical Characterization of Alkaliphilic Cyclodextran Glucanotransferase from an Alkaliphilic Bacterium, Paenibacillus daejeonensis

  • Yang, So-Jin;Ko, Jin-A;Kim, Hae-Soo;Jo, Min-Ho;Lee, Ha-Nul;Park, Bo-Ram;Kim, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2029-2035
    • /
    • 2018
  • Cycloisomaltooligosaccharide glucanotransferase (CITase) was isolated from alkaliphilic Paenibacillus daejeonensis via an amino acid homology search for the reported CITase. The recombinant alkaliphilic CITase (PDCITase) from P. daejeonensis was expressed in an Escherichia coli expression system and purified as a single protein band of 111 kDa. PDCITase showed optimum activity at pH 8.0 and retained 100% of activity within a broad pH range (7.0-11.5) after 18 h, indicating alkaliphilic or alkalistable CITase properties. In addition, PDCITase produced CI-7 to CI-17, CI-18, and CI-19, which are relatively large cycloisomaltooligosaccharides yet to be reported. Therefore, these large cycloisomaltooligosaccharides can be applied to the improvement of water solubility of pharmaceutical biomaterials.

Purification and Characterization of Two Endoxylanases from an Alkaliphilic Bacillus halodurans C-1

  • Tachaapaikoon Chakrit;Lee Yun-Sik;Rantanakhanokchai Khanok;Pinitglang Surapong;Kyu Khin Lay;Rho Min-Suk;Lee Si-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.613-618
    • /
    • 2006
  • Two endoxylanases from an alkaliphilic bacterium, Bacillus halodurans C-1, were purified 3.8- and 7.9- fold with specific activities of 9.4 and 19.8U/mg protein, respectively. The molecular masses of both purified enzymes were 23 and 47 kDa, respectively, and 23 kDa xylanase I (Xyl I) exhibited an optimum pH at 7.0, whereas 47 kDa xylanase II (Xyl II) showed a broad pH range of 5.0 to 9.0. The temperature optima of both xylanases were $60^{\circ}C\;and\;70^{\circ}C$, respectively. Both were stable in the pH range of 6.0 to 9.0 and 5.0 to 10.0, respectively, and they were stable up to $60^{\circ}C\;and\;70^{\circ}C$, respectively. The $K_m\;and\;V_{max}$ of Xyl I were 4.33mg/ml and $63.5{\mu}mol/min/mg$, respectively, whereas Xyl II had a $K_m$ value of 0.30 mg/ml and $V_{max}$ of $210{\mu}mol/min/mg$. Both xylanases hydrolyzed xylans from birchwood, oat spelt, and larchwood. However, they showed different modes of action; a series of xylooligosaccharides larger than xylotriose were released as the major products by Xyl I, whereas xylobiose and xylotriose were the main products by Xyl II. The maximum synergistic action of the two enzymes on hydrolysis of xylan was 2.16 with the ratio of Xyl I to Xyl II at 1:9.

Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater

  • Lee, Sung-Hun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1908-1914
    • /
    • 2008
  • An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-KI6 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cell-free extract (crude enzyme).

Processing of an Intracellular Immature Pullulanase to the Mature Form Involves Enzymatic Activation and Stabilization in Alkaliphilic Bacillus sp. S-1

  • Lee, Moon-Jo;Kang, Bong-Seok;Kim, Dong-Soo;Kim, Yong-Tae;Kim, Se-Kwon;Chung, Kang-Hyun;Kim, Jume-Ki;Nam, Kyung-Soo;Lee, Young-Choon;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Alkaliphilic Bacillus sp. S-1 secretes a large amount (approximately 80% of total pullulanase activity) of an extracellular pullulanase (PUL-E). The pullulanase exists in two forms: a precursor form (PUL-I: $M_r$ 180,000), and a processed form (PUL-E: $M_r$ 140,000). Two forms were purified to homogeneity and their properties were compared. PUL-I was different in molecular weight, isoelectric point, $NH_2$-terminal amino acid sequence, and stabilities over pH and temperature ranges. The catalytic activities of PUL-I were also distinguishable in the $K_m$ and $V_{max}$ values for various substrates, and in the specific activity for pullulan hydrolysis. PUL-E showed 10-fold higher specific activities than PUL-I. However. PUL-I is immunologically identical to PUL-E, suggesting that PUL-I is initially synthesized and proteolytically processed to the mature form of PUL-E. Processing was inhibited by PMSF, but not by pepstatin, suggesting that some intracellular serine proteases could be responsible for processing of the PUL-I. PUL-I has a different conformational structure for antibody recognition from that of PUL-E. It is also postulated that the translocation of alkaline pullulanase(AP) in the bacterium possibly requires processing of the $NH_2$-terminal region of the AP protein. Processing of the precursor involves a conformational shift. resulting in a mature form. Therefore. precursor processing not only cleaves the signal peptide, but also induces conformational shift. allowing development of active form of the enzyme.

  • PDF

Cloning, Expression, and Characterization of a Cold-Adapted and Surfactant-Stable Alginate Lyase from Marine Bacterium Agarivorans sp. L11

  • Li, Shangyong;Yang, Xuemei;Zhang, Lan;Yu, Wengong;Han, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to find a cold-adapted and surfactant-stable alginate lyase as a candidate for biotechnological and industrial applications. The gene for a new alginate lyase, AlyL1, from Agarivorans sp. L11 was cloned and expressed in Escherichia coli. The recombinant AlyL1 was most active at 40℃ (1,370 U/mg). It was a cold-adapted alginate lyase, which showed 54.5% and 72.1% of maximum activity at 15℃ and 20℃, respectively. AlyL1 was an alkaliphilic enzyme and most active at pH 8.6. In addition, it showed high stability in the presence of various surfactants at a high concentration (from 0.1% to 1% (w/v)). AlyL1 was an endo-type alginate lyase that degraded both polyM and polyG blocks, yielding disaccharides and trisaccharides as the main products. This is the first report of the cloning and functional expression of a cold-adapted and surfactant-stable alginate lyase. AlyL1 might be an interesting candidate for biotechnological and industrial applications.

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

Granulosicoccaceae fam. nov., to Include Granulosicoccus antarcticus gen. nov., sp. nov., a Non-phototrophic, Obligately Aerobic Chemoheterotroph in the Order Chromatiales, Isolated from Antarctic Seawater

  • Lee, Ki-Young;Lee, Hong-Kum;Choi, Tae-Hwan;Kim, Kyung-Mi;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1483-1490
    • /
    • 2007
  • A Gram-negative, motile by tuft flagella, obligately aerobic chemoorganoheterotrophic, sphere-form bacterium, designated $IMCC3135^T$, was isolated from the Antarctic surface seawater of King George Island, West Antarctica. The strain was mesophilic, neutrophilic, and requiring NaCl for growth, but neither halophilic nor halotolerant. The 16S rRNA gene sequence analysis indicated that the strain was most closely related to genera of the order Chromatiales in the class Gammaproteobacteria. The most closely related genera showed less than 90% 16S rRNA gene sequence similarity and included Thioalkalispira (89.9%), Thioalkalivibrio (88.0%-89.5%), Ectothiorhodospira (87.9%-89.3%), Chromatium (88.3%-88.9%), and Lamprocystis (87.7%-88.9%), which represent three different families of the order Chromatiales. Phylogenetic analyses showed that this Antarctic strain represented a distinct phylogenetic lineage in the order Chromatiales and could not be assigned to any of the defined families in the order. Phenotypic characteristics, including primarily non-phototrophic, non-alkaliphilic, non-halophilic, and obligately aerobic chemoheterotrophic properties, differentiated the strain from other related genera. The very low sequence similarities (<90%) and distant relationships between the strain and members of the order suggested that the strain merited classification as a novel genus within a novel family in the order Chromatiales. On the basis of these taxonomic traits, a novel genus and species is proposed, Granulosicoccus antarcticus gen. nov., sp. nov., in a new family Granulosicoccaceae fam. nov. Strain $IMCC3135^T\;(=KCCM42676^T=NBRC\;102684^T)$ is the type strain of Granulosicoccus antarcticus.

Molecular Cloning and Characterization of Alkaliphilic Phospholipase B (VFP58) from Vibrio fluvialis

  • AHN SUN HEE;JEONG SEUNG HA;KIM JIN MAN;KIM YOUNG OK;LEE SANG JUN;KONG IN SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.354-361
    • /
    • 2005
  • Vibrio fluvialis, an enteropathogenic bacterium, produces a phospholipase which is thought to be an important factor in the pathogenesis of disease. In this study, the phospholipase gene (vfp) was identified from V fluvialis (KCTC 2473) and its sequence was determined. The entire open reading frame was composed of 1,689 nuc1eotides and 563 amino acids. The phospholipase gene (vfp) was overexpressed in Escherichia coli as a his-tag fused protein. This recombinant protein (rVFP58) was solubilized with 6 M urea and purified by Ni-NTA affinity chromatography. The action mode of rVFP58 was determined by TLC and GC-MS, and it showed phospholipase B activity, which had both phospholipase A and lysophospholipase activities. The rVFP58 showed a maximum activity at pH around 9- 10 and temperature of about 40OC, and it was stable under alkaline condition over pH 9. The cytotoxicity of rVFP58 was evaluated, using a fish cell line, CHSE-2l4, and was found to cause significant cell death after 14 h of exposure to 250 $\mu$g of the protein.