Browse > Article

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK  

Kaewintajuk Kusuma (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Chon Gil-Hyong (Department of Infection Biology, College of Medicine, Wonkwang University)
Lee Jin-Sang (Department of Infection Biology, College of Medicine, Wonkwang University)
Kongkiattikajorn Jirasak (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Ratanakhanokchai Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Kyu Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Lee John-Hwa (College of Veterinary Medicine, Chonbuk National University)
Roh Min-Suk (Department of Applied Biochemistry, Konkuk University)
Choi Yun-Young (Department of Infection Biology, College of Medicine, Wonkwang University)
Park Hyun (Department of Infection Biology, College of Medicine, Wonkwang University)
Lee Yun-Sik (Department of Infection Biology, College of Medicine, Wonkwang University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.8, 2006 , pp. 1255-1261 More about this Journal
Abstract
An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.
Keywords
Xylanolytic enzymes; agricultural residue; alkaliphilic Bacillus sp. strain BK; kraft pulp; xylan-binding ability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Black, G. W., G. P. Hazlewood, S. J. Millward-Sadler, J. I. Laurie, and H. J. Gilbert. 1995. A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307: 191-195   DOI
2 Heo, S. Y, J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and betaxylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
3 Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca. Appl. Environ. Microbiol. 60: 763-770
4 Kaneko, S., T. Shimasaki, and I. Kusakabe. 1993. Purification and some properties of intracellular u-t-arabinofurancsidase from Aspergillus niger 5-16. Biosci. Biotechnol. Biochem. 57: 1161-1165   DOI   ScienceOn
5 Kang, S. C., H. J. Kim, S. W Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766-772
6 Kelett, L. E., D. M. Poole, L. M. A. Ferreira, A. J. Durrant, G. P. Hazlewood, and H. J. Gilbert. 1990. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem. J. 272: 369-376   DOI
7 Klier, A. F. and G. Rapoport. 1988. Genetic and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42: 65-95   DOI   ScienceOn
8 Senior,D. J., P. R. Meyers, D. Miller, R. Sutcliffe, L. Tan, and J. N. Saddler. 1988. Selective solubilization ofxylan in pulp using a purified xylanase from Trichoderma harzianurn. Biotechnol. Lett. 10: 907-912   DOI
9 Sunna, A. and G. Antrankian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67   DOI
10 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
11 Viikari, L., M. Tenkanen, and J. Buchert. 1993. Hemicellulase from industrial applications, pp. 131-182. In Saddler, J. N. (ed.), Bioconversion of Forest and Agricultural Plant Residues. C. A. B. International Publishers, Wallingford
12 Wheals, A. E., L. C. Basso, D. M. G Alves, and H. V. Amorim. 1999. Fuel, ethanol after 25 years. Trends Biotechnol. 17: 482-487   DOI   ScienceOn
13 Biely, P., J. Puis, and H. Schneider. 1985. Acetyl xylan esterase in fungal cellulolytic systems. FEBS Lett. 186: 8084
14 Lee Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG22. J. Microbiol. Biotechnol. 12: 1014-1021
15 Kyu, K. L., K. Ratanakhanokchai, M. Tanticharoen, T. Ratanarojmongkol, and S. T. Chen. 2001. Hydrolysis of lignocellulosic materials and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. K-1. J. Natl. Res. Council Thailand 33: 39-54
16 PuIs, J. and J. Schuseil. 1993. Chemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis, pp. 1-28. In Coughlan, M. P. and G. P. Hazlewood. (eds.), Hemicellulose and Hemicellulases. Portland Press Ltd., London
17 Hall, J., G. W Black, L. M. A. Ferreira, S. H. MillwardSadler, and B. R. S. Ali. 1995. The non-catalytic cellulosebinding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of avicel. Biochem. J. 309: 749-756   DOI
18 Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties ofxylan-binding endoxylanase from alkaliphilic Bacillus sp. K-1. Appl. Environ. Microbiol. 65: 694-697
19 Gilkes, N. R., B. Henrissat, D. G. Kilburn, Jr. R. C. Miller, and R. A. J. Warren. 1991. Domains in microbial $\beta$-1 ,4-glycanases: Sequence conservation, function and enzyme families. Microbiol. Rev. 55: 303-315
20 Viikari, L., A. Kantellinen, J. Sundquist, and M. Linko. 1994. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Lett. 13: 335-350   DOI   ScienceOn
21 Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 19-23
22 Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBD to xylan hydrolysis. J. Ferment. Bioeng, 85: 63-68   DOI   ScienceOn
23 Kyu, K. L., K. Ratanakhanokchai, D. Uitapap, and M. Tanticharoen. 1994. Induction of xylanase in Bacillus circulans B6. Bioresour. Technol. 48: 163-167   DOI   ScienceOn
24 Baker, U., S. Yavascaoglu, F. Guvenc, and A. Ersayin. 2001. An endo-$\beta$ -1,4-xylanase from Rhizopus oryzae: Production, partial purification and biochemical characterization. Enzyme Microb. Technol. 29: 328-334   DOI   ScienceOn
25 Ferrira, L. M. A, D. M. Wood, and G. Williamson. 1993. A modular esterase from Pseudomonas fluorescens subspcellulosa contains identical cellulose-binding domain. Biochem. J. 294: 349-355   DOI
26 Berg, B., B. V. Hofstan, and G. Petterson. 1972. Growth and cellulose fermentation by Cellvibrio fulvus. J. Appl. Bacteriol. 35: 201-214   DOI
27 Karita, S., K. Sakka, and K. Ohmiya. 1996. Cellulose-binding domain confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556   DOI   ScienceOn
28 Tsujibo, H., T. Ohtsuki, T. Ilo, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
29 Kantelinen, A, T. Rantanen, and J. Buchert. 1993. Enzymatic solubilization of fiber-bound and isolated birchwood xylans. J. Biotechnol. 28: 219-228   DOI   ScienceOn
30 Lee, Y. E., S. E. Lowe, and G. Zeikus. 1993. Regulationand characterization of xylanolytic enzymes of Tbermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 763-771
31 Lowry, O. H., N. H. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. BioI. Chem. 193: 265-275
32 Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
33 Hayn, M., W. Steiner, R. Kinger, H. Steinmuller, M. Sinner, and H. Esterbauer. 1993. Basic research and pilot studies on the enzymatic conversion of lignocellulosics, pp. 33-72. In Saddler, J. N. (ed.), Bioconversion of Forest and Agricultural Plant Residues. C. A. B. International Publishers, Wallingford
34 Song, H. H., M. J. Gill, and C. Lee. 2005. Mass-spectral identification of an extracellular protease from Bacillus subtilis KCCM 10257, a producer of antibacterial peptide subtilein. J. Microbiol. Biotechnol. 15: 1054-1059   과학기술학회마을
35 Coughlan, M. P., M. G. Tuohy, E. X. F. Filho, J. Puis, M. Claeyssens, M. Vrsanska, and M. H. Hughes. 1993. Enzymological aspects of microbial hemicellulases with emphasis on fungal systems, pp. 53-84. In Coughlan, M. P. and G. P. Hazlewood (eds.), Hemicelluloses and Hemicellulases. Portland Press, London
36 Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
37 Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Molec. Microbiol. 11: 375-382   DOI   ScienceOn
38 Choi, J. H., O. S. Lee, J. H. Shin, Y. Y. Kwak, Y. M. Kim, and I. K. Rhee. 2006. Thermostable xylanase encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, purification, characterization and production of xylooligosaccharides. J. Microbiol. Biotechnol. 16: 57-63   과학기술학회마을