DOI QR코드

DOI QR Code

Biochemical Characterization of Alkaliphilic Cyclodextran Glucanotransferase from an Alkaliphilic Bacterium, Paenibacillus daejeonensis

  • Yang, So-Jin (Department of Food Science and Technology and BK21 Plus Program, Chonnam National University) ;
  • Ko, Jin-A (Radiation Breeding Research Center, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Hae-Soo (Department of Food Science and Technology and BK21 Plus Program, Chonnam National University) ;
  • Jo, Min-Ho (Department of Food Science and Technology and BK21 Plus Program, Chonnam National University) ;
  • Lee, Ha-Nul (Department of Food Science and Technology and BK21 Plus Program, Chonnam National University) ;
  • Park, Bo-Ram (Department of Agrofood Resources National Academy of Agricultural Science, RDA) ;
  • Kim, Young-Min (Department of Food Science and Technology and BK21 Plus Program, Chonnam National University)
  • 투고 : 2018.10.04
  • 심사 : 2018.10.25
  • 발행 : 2018.12.28

초록

Cycloisomaltooligosaccharide glucanotransferase (CITase) was isolated from alkaliphilic Paenibacillus daejeonensis via an amino acid homology search for the reported CITase. The recombinant alkaliphilic CITase (PDCITase) from P. daejeonensis was expressed in an Escherichia coli expression system and purified as a single protein band of 111 kDa. PDCITase showed optimum activity at pH 8.0 and retained 100% of activity within a broad pH range (7.0-11.5) after 18 h, indicating alkaliphilic or alkalistable CITase properties. In addition, PDCITase produced CI-7 to CI-17, CI-18, and CI-19, which are relatively large cycloisomaltooligosaccharides yet to be reported. Therefore, these large cycloisomaltooligosaccharides can be applied to the improvement of water solubility of pharmaceutical biomaterials.

키워드

참고문헌

  1. Oguma T, Horiuchi T, Kobayashi M. 1993. Novel cyclic dextrins, cycloisomaltooligosaccharides, from Bacillus sp. T-3040 culture. Biosci. Biotechnol. Biochem. 57: 1225-1227. https://doi.org/10.1271/bbb.57.1225
  2. Funane K, Terasawa K, Mizuno Y, Ono H, Miyagi T, Gibu S, Tokashiki T, et al. A novel cyclic isomaltooligosaccharide (cycloisomaltodecaose, CI-10) produced by Bacillus circulans T-3040 displays remarkable inclusion ability compared with cyclodextrins. J. Biotechnol. 130: 188-192.
  3. Funane K, Terasawa K, Mizuno Y, Ono H, Gibu S, Tokashiki T, et al. 2008. Isolation of Bacillus and Paenibacillus bacterial strains that produce large molecules of cyclic isomaltooligosaccharides. Biosci. Biotechnol. Biochem. 72: 3277-3280. https://doi.org/10.1271/bbb.80384
  4. Kobayashi M, Funane K, Oguma T. 1995. Inhibition of dextran and mutan synthesis by cycloisomaltooligosaccharides. Biosci. Biotechnol. Biochem. 59: 1861-1865. https://doi.org/10.1271/bbb.59.1861
  5. Suzuki R, Terasawa K, Kimura K, Fujimoto Z, Momma M, Kobayashi M, et al. 2012. Biochemical characterization of a novel cycloisomaltooligosaccharide glucanotransferase from Paenibacillus sp. 598K. Biochem. Biophys. Acta 1824: 919-924.
  6. Oguma T, Tobe K, Kobayashi M. 1994. Purification and properties of a novel enzyme from Bacillus spp. T-3040, which catalyzes the conversion of dextran to cyclic isomaltooligosaccharides. FEBS Lett. 345: 135-138. https://doi.org/10.1016/0014-5793(94)00418-8
  7. Oguma T, Kitao S, Kobayashi M. 2014. Purification and characterization of cycloisomalto-oligosaccharide glucanotransferase and cloning of cit from Bacillus circulans U-155. J. Appl. Glycosci. 61: 93-98. https://doi.org/10.5458/jag.jag.JAG-2013_017
  8. Funane K, Ichinose H, Araki M, Suzuki R, Kimura K, Fujimoto Z, et al. 2014. Evidence for cycloisomaltooligosaccharide production from starch by Bacillus circulans T-3040. Appl. Microbiol. Biotechnol. 98: 3947-3954. https://doi.org/10.1007/s00253-014-5515-z
  9. Ichinose H, Suzuki R, Miyazaki T, Kimura K, Momma M, Suzuki N, et al. 2017. Paenibacillus sp. 598K 6-${\alpha}$-glucosyltransferase is essential for cycloisomaltooligosaccharides synthesis from ${\alpha}$-(1-4)-glucan. Appl. Microbiol. Biotechnol. 101: 4115-4128. https://doi.org/10.1007/s00253-017-8174-z
  10. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Saburi W, Mori H, Saito S, Okuyama M, Kimura A. 2006. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biosci. Biotechnol. Biochem. 1764: 688-698.
  12. Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, et al. 2008. Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J. Biol. Chem. 283: 36328-36337. https://doi.org/10.1074/jbc.M806115200
  13. Britton HTK, Robinson RA. 1931. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 31: 1456-1462.
  14. Kim YM, Kimura A, Kim D. 2011. Novel quantitative method for the degree of branching in dextran. Food Sci. Biotechnol. 20: 537-541. https://doi.org/10.1007/s10068-011-0075-9
  15. Juhasz P, Roskey MT, Smirnov IP, Haff LA, Vestal ML, Martin SA. 1996. Applications of delayed extraction matrixassisted laser desorption ionization time-of-flight mass spectrometry to oligonucleotide analysis. Anal. Chem. 68: 941-946. https://doi.org/10.1021/ac9510503
  16. Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  17. Lee JS, Lee KC, Chang YH, Hong SG, Oh HW, Pyun YR, et al. 2002. Paenibacillus daejeonensis sp. Nov., a novel alkaliphilic bacterium from soil. Int. J. Syst. Evol Microbiol. 52: 2107-2111.
  18. Funane K, K awabata Y, Suzuki R, Kim Y M, Kang HK, Fujimoto Z, et al. 2011. Deletion analysis of the C-terminal region of cycloisomaltooligosaccahride glucanotransferase from Bacillus circulans T-3040. Biochim. Biophys. Acta 1814: 428-434. https://doi.org/10.1016/j.bbapap.2010.12.009
  19. Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, et al. 2012. Structural elucidation of the cyclization mechanism of ${\alpha}$-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J. Biol. Chem. 289: 12040-12051.

피인용 문헌

  1. Thermostable CITase from Thermoanaerobacter thermocopriae shows negative cooperativity vol.41, pp.4, 2018, https://doi.org/10.1007/s10529-019-02666-6
  2. Carboxy-Terminal Region of a Thermostable CITase from Thermoanaerobacter thermocopriae Has the Ability to Produce Long Isomaltooligosaccharides vol.29, pp.12, 2018, https://doi.org/10.4014/jmb.1910.10022