Browse > Article
http://dx.doi.org/10.4014/jmb.0800.175

Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater  

Lee, Sung-Hun (Department of Biological Engineering, Seokyeong University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.12, 2008 , pp. 1908-1914 More about this Journal
Abstract
An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-KI6 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cell-free extract (crude enzyme).
Keywords
Tributyrin; lipase; esterase; alkaliphile; Bacillus clausii;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Dupuis, C., C. Corre, and P. Boyaval. 1993. Lipase and esterase activities of Propionibacterium freudenreichii subsp. freudenreichii. Appl. Environ. Microbiol. 59: 4004-4009
2 Higerd, T. B. 1977. Isolation of acetyl esterase mutants of Bacillus subtilis 168. J. Bacteriol. 129: 973-977
3 Janssen, P. H. and B. Schink. 1995. Pathway of butyrate catabolism by Desulfobacterium cetonicum. J. Bacteriol. 177: 3870-3872   DOI
4 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
5 Lanz, W. W. and P. P. Williams. 1973. Characterization of esterase produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens. J. Bacteriol. 113: 1170-1176
6 Meghji, K., O. P. Ward, and A. Araujo. 1990. Production, purification and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL365. Appl. Environ. Microbiol. 56: 3375-3740
7 Mongkolthanaruk, W. and S. Dharmsthiti. 2002. Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. Intern. Biodeterio Biodegrad. 50: 101-105   DOI   ScienceOn
8 Pons, J. L., B. Picard, P. Niel, G. Leluan, and P. Goullet. 1993. Esterase electrophoresis polymorphism of human and animal strains of Clostridium perfringens. Appl. Environ. Microbiol. 59: 496-501
9 Verger, R. 1997. Interfacial activation of lipase: Facts and artifacts. Trends Biotechnol. 15: 32-38   DOI   ScienceOn
10 Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58: 703-705
11 Stuer, W., K. E. Jaeger, and U. K. Winkler. 1986. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol. 168: 1070-1074   DOI
12 Harris, H. and D.A. Hopkinson. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Section 3.1.1.1 Esterase. North-Holland Publishing Company, New York
13 Hayashida, S., Y. Teramoto, T. Inoue, and S. Mitsuiki. 1990. Occurrence of an affinity site apart from the active site on the rawstarch- digesting but non-raw-starch-adsorbable Bacillus subtillis 65 $\alpha$-amylase. Appl. Environ. Microbiol. 56: 2584-2586
14 Linderen, V. and L. Rutberg. 1974. Glycerol metabolism in Bacillus subtilis: Gene-enzyme relationships. J. Bacteriol. 119: 431-442
15 Ogawa, T., K. Murakami, H. Mori, N. Ishii, M. Tomita, and M. Yoshin. 2007. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. J. Bacteriol. 189: 1176-1178   DOI   ScienceOn
16 Bozdogan, B., S. Galopin, and R. Leclercq. 2004. Characterization of a new-related macrolide resistance gene present in probiotic strain of Bacillus clausii. Appl. Environ. Microbiol. 70: 280-284   DOI   ScienceOn
17 Ikawa, K., H. Araki, Y. Tsujino, Y. Hajashi, K. Igarashi, Y. Hatada, et al. 1998. Hyperexpression of the gene for a Bacillus a-amylase in Bacillus subtilis cells: Enzymatic properties and crystallization of the recombinant enzyme. Biosci. Biotechnol. Biochem. 62: 1720-1725   DOI
18 Kulkarni, N., M. Lakshmikumaran, and M. Rao. 1999. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: Evolutionary relationship to alkaliphilic xylanases. Biochem. Biophys. Res. Commun. 263: 640-645   DOI   ScienceOn
19 Senesi, S., F. Celandroni, A. Tavanti, and E. Chelardi. 2001. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microbiol. 67: 834-839   DOI   ScienceOn
20 Louis, P., S. H. Duncan, S. K. McCrae, J. Millar, M. S. Jackson, and H. J. Flint. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from human colon. J. Bacteriol. 186: 2099-2106   DOI   ScienceOn
21 Robson, L. M. and G. H. Chambliss. 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Environ. Microbiol. 472: 1039-1046
22 Crueger, W. and A. Crueger. 1989. Biotechnology: A Textbook of Industrial Microbiology. $2^{nd}$ Ed. pp. 59-63. Sinauer Associates, Inc. Sunderland, MA
23 O'Brien, W. E. and L. G. Ljungdahl. 1972. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J. Bacteriol. 109: 626-632
24 Holme, D. J. and H. Peck. 1998. Analytical Biochemistry. 3rd Ed. pp. 53-60. Addison Wesley Longman, New York
25 Ruch, F. E., J. Lengeler, and E. C. C. Lin. Regulation of glycerol catabolism in Klebseilla aerogenes. J. Bacteriol. 119: 50-56
26 Flickinger, M. C. and D. Perfman. 1977. Application of oxygen-enriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Environ. Microbiol. 33: 706-712
27 Lefebvre, X., E. Paul, M. Mauret, P. Baptiste and B. Capdeville. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Res. 32: 3031-3038   DOI   ScienceOn
28 Gottschalk, G. 1986. Bacterial Metabolism. 2nd Ed. pp. 149-154. Springer-Verlag. New York
29 Kok, R. G., C. B. Nudel, R. H. Gonzalez, I. M. Nugteren-Roodzant, and K. J. Hellingwerz. 1996. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: Fatty acid repression of lipA expression and degradation of LipS. J. Bacteriol. 178: 6025-6035   DOI
30 Takami, H. and K. Horikoshi. 2000. Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles 4: 99-108   DOI   ScienceOn
31 Pflug, J. P., G. M. Smith, and R. Christensen. 1981. Effect of soybean casein digest agar lot on number of Bacillus stearothermophilus spores recovered. Appl. Environ. Microbiol. 42: 226-230
32 Takami, H., Y. Takaki, K. Nakasone, T. Sakiyam, G. Maeno, R. Sasaki, C. Hirama, F. Fuji, and N. Masui. 1990. Genetic analysis of the chromosome of alkaliphile Bacillus halodurans C-125. Extremophiles 3: 227-233   DOI   ScienceOn
33 Yang, S. T., I. C. Tang, and M. R. Okos. 1987. Kinetics of homoacetic fermentation of lactate by Clostridium formicoaceticum. Appl. Environ. Microbiol. 53: 823-827
34 Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology. 4th Ed. pp. 466-474. Wiley-Liss, New York
35 Winkler, U. K. and M. Stuckmann. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663-670
36 Christiansen, T., B. Christensen, and J. Nielsen. 2002. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using $^{13}C$-labeled glucose. Metab. Eng. 4: 159-169   DOI   ScienceOn
37 Molenaar, D., E. van der Rest, A. Drysch, and R. Yücel. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenase in the citric acid cycle of Corynebacterium glutamicum. J. Bacteriol. 182: 6884-6891   DOI   ScienceOn
38 Baronofsky, J. J., J. A. Wilhelmus, and E. R. Kashaket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 48: 1134-1139