• Title/Summary/Keyword: Alkali activated cement

Search Result 123, Processing Time 0.022 seconds

The strength properties of alkali-activated silica fume mortars

  • Saridemir, Mustafa;Celikten, Serhat
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • In this study, the strength properties of alkali-activated silica fume (SF) mortars were investigated. The crushed limestone sand with maximum size of 0-5 mm and the sodium meta silicate ($Na_2SiO_3$) used to activate the binders were kept constant in the mortar mixtures. The mortar specimens using the replacement ratios of 0, 25, 50, 75 and 100% SF by weight of cement together with $Na_2SiO_3$ at a constant rate were produced in addition to the control mortar produced by only cement. Moreover, the mortar specimens using the replacement ratio of 4% titanium dioxide ($TiO_2$) by weight of cement in the same mixture proportions were produced. The prismatic specimens produced from eleven different mixtures were de-moulded after a day, and the wet or dry cure was applied on the produced specimens at laboratory condition until the specimens were used for flexural strength ($f_{fs}$) and compressive strength ($f_c$) measurement at the ages of 7, 28 and 56 days. The $f_{fs}$ and $f_c$ values of mortars applied the wet or dry cure were compared with the results of control mortar. The findings revealed that the $f_c$ results of the alkali activated 50% SF mortars were higher than that of mortar produced with Portland cement only. It was found that the $f_{fs}$ and $f_c$ of alkali-activated SF mortars cured in dry condition was averagely 4% lower than that of alkali-activated SF mortars cured in wet condition.

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(1) - Compressive strength and acid corrosion resistance - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(1) - 압축강도 및 산 저항성 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.801-809
    • /
    • 2007
  • Fly ash and blast furnace slag are an industrial by-product that can be alkali-activated to yield adhesive and cementitious materials, whose production is less energy-intensive and emits less $CO_2$ than ordinary Portland cement manufacture. A laboratory investigation was carried out to evaluate the effect of alkali-activating conditions on compressive strength of fly ash/slag cement and the acid corrosion resistance of this cement. Two alkali activator solution, NaOH and waterglass + NaOH solutions, were used. Waterglass concentration was the factor that gave the highest compressive strength in all tests. The next significant factor was the NaOH concentration, followed by curing temperature. Acid corrosion resistance of FC(fly ash cement) and FSC(fly ash/slag cement), such as sulfuric$(H_2SO_4)$ and hydrochloric acid(HCl), was for better than Portland cement(PC).

Pore and Efflorescence Characteristics of Alkali Activated Slag-Red Mud Cement Mortar depending on Red Mud Content (레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 시멘트 모르타르의 기공 및 백화특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • Red mud is an inorganic by-product obtained from the mineral processing of alumina from Bauxite ores. A highly alkali inorganic waste product with a pH level over 11, red mud in its original state negatively impacts the ecosystem, so appropriate treatment is necessary. The development of alkali activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. However, Alkali-activated binders that use sodium activators have been reported to be more vulnerable to efflorescence. Therefore, in this study, the compressive strength, pore characteristics, water absorption, elution characteristics, and efflorescence properties of alkali-activated slag cement mortar were assessed according to their red mud substitution ratio.

Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 철근 콘크리트 보의 휨거동 평가)

  • Lee, Kwang-Myong;Seo, Jung-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2015
  • Cement zero concrete produced by alkali-activators and industrial by-products such as slag instead of cement, enables to solve the environmental pollution problems provoked by the exhaustion of natural resources and energy as well as the discharge of carbon dioxide. However, researches on the cement zero concrete are still limited to material studies and thus, study on the structural behavior of relevant members is essential to use the cement zero concrete as structural materials. This paper aims to evaluate experimentally and analytically the flexural behavior of RC beams using 50 MPa alkali activated slag concrete. To achieve such a goal, flexural tests on three types of RC beam specimens were conducted. A nonlinear analysis model is proposed using the modulus of elasticity and stress-strain relationship of alkali activated slag concrete. The analysis results obtained by the proposed model agree well with the experimental results, which could verify the validity of the proposed model.

Porosity of Alkali-Activated Slag-Red Mud Soil Mixed Pavement of Red Mud Substitution Rate (알칼리활성화 슬래그-레드머드 흙포장재의 레드머드 대체율에 따른 기공특성)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.91-92
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the pore characteristics of alkali-activated slag-red mud soil pavement according to the red mud content. The results showed that the porosity of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the red mud content increased.

  • PDF

A Preliminary Study on Alkali Activation of Waste Concrete Powder

  • Sasui, Sasui;Kim, Gyu-Yong;Eu, Ha-Min;Lee, Yae-Chan;Phyeon, Su-Jeong;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.303-304
    • /
    • 2023
  • In this study, the effects of NaOH and KOH alkali activators of various concentrations on the performance of alkali activated waste concrete powder (WCP) was discussed. The samples activated by alkaline solutions were cured for up to 28 days and then compressive strength test was performed. These samples were also characterized using various techniques to explore the phase evolution, and microstructural changes. Results showed superior performance of NaOH-activated WCP. Additionally, activation of WCP by 8M concentrated alkali solutions improved the strength, reactivity and microstructure of alkali activated WCP binder sample.

  • PDF

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(2) - Reaction products and microstructure - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(2) - 반응생성물과 미세구조 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.810-819
    • /
    • 2007
  • Investigation of alkali activation of fly ash and blast furnace slag was carried out using waterglass and sodium hydroxide. XRD, FTIR, $^{29}Si$ and $^{27}Al$ NMR, TGA and SEM were used to observed the reaction products and microstructure of the fly ash/slag cement (FSC) pastes. The reaction products were amorphous or low-ordered calcium silicate hydrate and aluminosilicate gel produced from alkali activation of blast furnace slag and fly ash, respectively. On the basis of this investigation, waterglass solution with a modulus(Ms) of 1.0 and 1.2 is recommended for alkali activation of fly ash and blast furnace slag. Morphology of FSC pastes alkali-activated with Ms of 1.0 and 1.2 shows a more solid and continuous matrix due to restructuring of gel-like reaction products from alkali-activated fly ash and blast furnace slag together with another hydrolysis product(i.e., silica gel) from water glass.

Effect of PVA Fiber and Silica Fume Addition on Chloride Penetration Resistance of Alkali-Activated Slag (PVA 섬유와 실리카흄 첨가가 알칼리 활성 슬래그의 염화물 침투 저항성에 미치는 영향)

  • Yoon, Hyun No
    • Journal of Urban Science
    • /
    • v.12 no.2
    • /
    • pp.13-18
    • /
    • 2023
  • This study investigates the effect of polyvinyl alcohol (PVA) fiber and silica fume addition on the chloride penetration resistance of alkali-activated slag. Silica fume was added to replace slag at the dosage of 0, 5, 10, and 20% by weight of the binder, while PVA fiber was added at the dosage of 0, 1, and 2% by volume of the mixture. Samples were synthesized via alkali activator with 1.0 of silicate modulus and cured at room temperature for 28 days. Compressive strength test, permeable voids volume test, water absorprtion test, and rapid chloride penetration test were conducted for measuring the charaterisitics of alkali-activaed slag. The results showed that increasing silica fume content up to 10% in alkali-activated slag improved compressive strength and chloride penetration resistance. Addition of PVA fibers up to 1% by volume enhanced strength and chloride penetration resistance, but exceeding this led to reduced strength and durability due to increased void formation in the matrix.

Fundamental Study of Alkali Activated Cement Mortar for Evaluating Applicability of Partial-Depth Repair (도로포장 보수재 활용 가능성 평가를 위한 알칼리 활성 시멘트 모르타르 기초연구)

  • Jeon, Sung Il;An, Ji Hwan;Kwon, Soo Ahn;Yun, Kyung Ku
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • PURPOSES : This study is to evaluate the feasibility of using the alkali activated cement concrete for application of partial-depth repair in pavement. METHODS : This study analyzes the compressive strength of alkali activated cement mortar based on the changes in the amount/type/composition of binder(portland cement, fly ash, slag) and activator(NaOH, $Na_2SiO_3$, $Na_2CO_3$, $Na_2SO_4$). The mixture design is divided in case I of adding one kind-activator and case II of adding two kind-activators. RESULTS : The results of case I show that $Na_2SO_4$ based mixture has superior the long-term strength when compared to other mixtures, and that $Na_2CO_3$ based mixture has superior the early strength when compared to other mixtures. But the mixtures of case I is difficult to apply in the material for early-opening-to-traffic, because the strength of all mixtures isn't meet the criterion of traffic-opening. The results of case II show that NaOH-$Na_2SiO_3$ based mixtures has superior the early/long-term strength when compared to NaOH-$Na_2SiO_3$ based mixtures. In particular, the NaOH-$Na_2SiO_3$ based some mixtures turned out to pass the reference strength(1-day) of 21MPa as required for traffic-opening. CONCLUSIONS : With these results, it could be concluded that NaOH-$Na_2SiO_3$ based mixtures can be used as the material of pavement repair.