• Title/Summary/Keyword: Algorithm decomposition

Search Result 789, Processing Time 0.027 seconds

Improving Collaborative Filtering with Rating Prediction Based on Taste Space (협업 필터링 추천시스템에서의 취향 공간을 이용한 평가 예측 기법)

  • Lee, Hyung-Dong;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.389-395
    • /
    • 2007
  • Collaborative filtering is a popular technique for information filtering to reduce information overload and widely used in application such as recommender system in the E-commerce domain. Collaborative filtering systems collect human ratings and provide Predictions based on the ratings of other people who share the same tastes. The quality of predictions depends on the number of items which are commonly rated by people. Therefore, it is difficult to apply pure collaborative filtering algorithm directly to dynamic collections where items are constantly added or removed. In this paper we suggest a method for managing dynamic collections. It creates taste space for items using a technique called Singular Vector Decomposition (SVD) and maintains clusters of core items on the space to estimate relevance of past and future items. To evaluate the proposed method, we divide database of user ratings into those of old and new items and analyze predicted ratings of the latter. And we experimentally show our method is efficiently applied to dynamic collections.

A layered-wise data augmenting algorithm for small sampling data (적은 양의 데이터에 적용 가능한 계층별 데이터 증강 알고리즘)

  • Cho, Hee-chan;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2019
  • Data augmentation is a method that increases the amount of data through various algorithms based on a small amount of sample data. When machine learning and deep learning techniques are used to solve real-world problems, there is often a lack of data sets. The lack of data is at greater risk of underfitting and overfitting, in addition to the poor reflection of the characteristics of the set of data when learning a model. Thus, in this paper, through the layer-wise data augmenting method at each layer of deep neural network, the proposed method produces augmented data that is substantially meaningful and shows that the method presented by the paper through experimentation is effective in the learning of the model by measuring whether the method presented by the paper improves classification accuracy.

Evaluation of Body Movement during Sleep with a Thermopile, Wavelets and Neuro-fuzzy Reasoning

  • Yoon, Young-Ro;Shin, Jae-Woo;Lee, Hyun-Sook;Jose C.Principe
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.5-10
    • /
    • 2004
  • Body movement is one of the important factors in sleep analysis. In this study, a thermopile detector with four channels was implemented as a non-contacting detector of body movement in sleep. Using a thermopile mathematical model and several frames of thermal images, the possibility of detecting body movement was evaluated. Instant body movement signals were evaluated for the upper, lower, and entire body using the Haar wavelet. This decomposition shows the points in time when the upper-body or lower-body movement occurred and the level of body movement. Additionally, partial body movement was decomposed in head-only, whole body, and leg-only movement using the ANFIS algorithm. Finally, three subject's data were evaluated for 60 minutes, and the detection rates of instant and partial body movement, on average, were 96.3% and 89.2%, respectively.

Development of non-fragile $H_{\infty}$ controller design algorithm for singular systems (특이시스템의 비약성 $H_{\infty}$ 제어기 설계 알고리듬 개발)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.9-14
    • /
    • 2005
  • In this paper, we consider the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Moreover, the controller design method can be extended to the problem of robust and non-fragile $H_{\infty}$ controller design method for singular systems with parameter uncertainties. Finally, a numerical example is given to illustrate the design method.

A Study on the Multiresolutional Coding Based on Spline Wavelet Transform (스플라인 웨이브렛 변환을 이용한 영상의 다해상도 부호화에 관한 연구)

  • 김인겸;정준용;유충일;이광기;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2313-2327
    • /
    • 1994
  • As the communication environment evolves, there is an increasing need for multiresolution image coding. To meet this need, the entrophy constratined vector quantizer(ECVQ) for coding of image pyramids by spline wavelet transform is introduced in this paper. This paper proposes a new scheme for image compression taking into account psychovisual feature both in the space and frequency domains : this proposed method involves two steps. First we use spline wavelet transform in order to obtain a set of biorthogonal subclasses of images ; the original image is decomposed at different scale using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vectored quantized using a multi-resolution ECVQ(entropy-constrained vector quantizer) codebook. The simulation results showed that the proposed method could achieve higher quality LENA image improved by about 2.0 dB than that of the ECVQ using other wavelet at 0.5 bpp and, by about 0.5 dB at 1.0 bpp, and reduce the block effect and the edge degradation.

  • PDF

Fully Distributed Economic Dispatching Methods Based on Alternating Direction Multiplier Method

  • Yang, Linfeng;Zhang, Tingting;Chen, Guo;Zhang, Zhenrong;Luo, Jiangyao;Pan, Shanshan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1778-1790
    • /
    • 2018
  • Based on the requirements and characteristics of multi-zone autonomous decision-making in modern power system, fully distributed computing methods are needed to optimize the economic dispatch (ED) problem coordination of multi-regional power system on the basis of constructing decomposition and interaction mechanism. In this paper, four fully distributed methods based on alternating direction method of multipliers (ADMM) are used for solving the ED problem in distributed manner. By duplicating variables, the 2-block classical ADMM can be directly used to solve ED problem fully distributed. The second method is employing ADMM to solve the dual problem of ED in fully distributed manner. N-block methods based on ADMM including Alternating Direction Method with Gaussian back substitution (ADM_G) and Exchange ADMM (E_ADMM) are employed also. These two methods all can solve ED problem in distributed manner. However, the former one cannot be carried out in parallel. In this paper, four fully distributed methods solve the ED problem in distributed collaborative manner. And we also discussed the difference of four algorithms from the aspects of algorithm convergence, calculation speed and parameter change. Some simulation results are reported to test the performance of these distributed algorithms in serial and parallel.

A Study for the Analysis of EEG Signals Evoked by Auditory Stimulus using Wavelet Transformations (Wavelet변환을 이용한 청각자극에 의해 유발되는 뇌파의 분석에 관한 연구)

  • Kim, J.H.;Yoo, I.H.;Shin, J.W.;Im, J.J.;Whang, M.C.;Kim, C.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.233-236
    • /
    • 1996
  • We are exposed to the various external stimuli input from the environment, which cause emotional changes based on the characteristics of the stimuli. Unfortunately, there are no quantitative results on relationship between human sensibility and the characteristics of physiological signals. The objective of this study was to quantify EEG signals evoked by auditory stimulation based on the assumption that the analysis of the variability on the characteristics of the EEG waveform may provide the significant information regarding changes in psychological states of the subject. The experiment was devised with seven experimental conditions, which are control and six different types of auditory stimulation. Twenty subjects were used to obtain EEGs while introducing auditory stimulation. Wavelet transformation was employed to analyze the EEG signals. The results showed that the reconstructed signals at the decomposition level revealed the different energy value on the EEG signals. Also, general patterns of EEG signals in rest state compare with negative and positive stimulus were found. This study could be extended to estabilish an algorithm which distinguishes psychophysiological states of the subjects exposed to the auditory stimulation.

  • PDF

Target Feature Extraction using Wavelet Coefficient for Acoustic Target Classification in Wireless Sensor Network (음향 표적 식별을 위한 무선 센서 네트워크에서 웨이블릿 상수를 이용한 표적 특징 추출)

  • Cha, Dae-Hyun;Lee, Tae-Young;Hong, Jin-Keung;Han, Kun-Hee;Hwang, Chan-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.978-983
    • /
    • 2010
  • Acoustic target classification in wireless sensor network is important research at environmental surveillance, invasion surveillance, multiple target separation. General sensor node signal processing methods concentrated on received signal energy based target detection and received raw signal compression. The former is not suited to target classification because of almost every target information are lost except target energy. The latter bring down life-time of sensor node owing to high computational complexity and transmission energy. In this paper, we introduce an feature extraction algorithm for acoustic target classification in wireless sensor network which has time and frequency information. The proposed method extracts time information and de-noised target classification information using wavelet decomposition step. This method reduces communication energy by 28% of original signal and computational complexity.

Digital Image Watermarking Scheme in the Singular Vector Domain (특이 벡터 영역에서 디지털 영상 워터마킹 방법)

  • Lee, Juck Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.122-128
    • /
    • 2015
  • As multimedia information is spread over cyber networks, problems such as protection of legal rights and original proof of an information owner raise recently. Various image transformations of DCT, DFT and DWT have been used to embed a watermark as a token of ownership. Recently, SVD being used in the field of numerical analysis is additionally applied to the watermarking methods. A watermarking method is proposed in this paper using Gabor cosine and sine transform as well as SVD for embedding and extraction of watermarks for digital images. After delivering attacks such as noise addition, space transformation, filtering and compression on watermarked images, watermark extraction algorithm is performed using the proposed GCST-SVD method. Normalized correlation values are calculated to measure the similarity between embedded watermark and extracted one as the index of watermark performance. Also visual inspection for the extracted watermark images has been done. Watermark images are inserted into the lowest vertical ac frequency band. From the experimental results, the proposed watermarking method using the singular vectors of SVD shows large correlation values of 0.9 or more and visual features of an embedded watermark for various attacks.

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.