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Abstract – Based on the requirements and characteristics of multi-zone autonomous decision-making 
in modern power system, fully distributed computing methods are needed to optimize the economic 
dispatch (ED) problem coordination of multi-regional power system on the basis of constructing 
decomposition and interaction mechanism. In this paper, four fully distributed methods based on 
alternating direction method of multipliers (ADMM) are used for solving the ED problem in 
distributed manner. By duplicating variables, the 2-block classical ADMM can be directly used to 
solve ED problem fully distributed. The second method is employing ADMM to solve the dual 
problem of ED in fully distributed manner. N-block methods based on ADMM including Alternating 
Direction Method with Gaussian back substitution (ADM_G) and Exchange ADMM (E_ADMM) are 
employed also. These two methods all can solve ED problem in distributed manner. However, the 
former one cannot be carried out in parallel. In this paper, four fully distributed methods solve the ED 
problem in distributed collaborative manner. And we also discussed the difference of four algorithms 
from the aspects of algorithm convergence, calculation speed and parameter change. Some simulation 
results are reported to test the performance of these distributed algorithms in serial and parallel. 
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1. Introduction 
 
The economic dispatch (ED) model of power system is 

the basic problem of the optimal operation of the power 
system. It means to optimize the output of each unit to 
minimize the total operating cost of the generator set 
under the condition of satisfying the system load demand 
and the running condition of the unit [1]. Most of the real-
time optimal scheduling procedures adopted by the current 
national power companies are based on the classical ED 
mathematical model. 

To date, a number of approaches have been proposed 
for ED. These methods mainly include two categories, 
the traditional classical optimization algorithm and the 
intelligent optimization algorithm. The traditional optimi-
zation algorithms include quadratic programming [2], 
linear programming [3], dynamic programming [4], 
Lagrangian relaxation [5, 6], and priority list [7]. The 
intelligent optimization algorithm mainly includes artificial 
neural network algorithm [8, 9], genetic algorithm [10], 
particle swarm optimization (PSO) [11], and some hybrid or 

improved method [12-14]. A hybrid algorithm ACO–
ABC–HS [12] combines the framework of Ant Colony 
Optimization (ACO), Artificial Bee Colony (ABC) and 
Harmonic Search (HS) algorithms to find the optimized 
solution for the problem of ED for a multi-generator 
system. A novel modified particle swarm optimization [13], 
which includes advantages of bacterial foraging and PSO 
for constrained dynamic ED problem. The modified PSO 
has better balance between local and global search abilities 
and it can avoid local minima quickly. The integrated 
genetic algorithm [14] is implemented in both parallel and 
cluster structures.  

With the development of renewable energy, the structure 
of power grid is more and more complex. Centralized ED 
is clearly not suitable for modern power grid. Most of the 
above algorithms only focus on how to quickly solve the 
problem from the perspective of computing speed. And 
they did not take into account the following questions: 
First, parallel computing should not mean a simple task of 
multi-machine allocation [15]. But it should be combined 
with the characteristics of the power system to achieve 
the distributed processing of resources and tasks [16]. 
Second, in the above parallel algorithms, at least one host 
needs to understand the entire network of mathematical 
models and detailed parameters, which needs to collect 
all the data of the whole system [14]. For this manner, 
data communication is the bottleneck and the participants’ 
private parameters exposure is the mainly concerned 
problem. Finally, the development of the electricity market 
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makes the models and data within the divisions of the 
grid a commercial secret, and the data exchange between 
regions becomes impossible and unnecessary [17, 18]. 
Based on the above reasons, the fully distributed parallel 
processing technology in the power system still is a 
problem worth a further study. In the fully distributed 
method, all participators can keep their device charac-
teristics secret, and each agent solves a subproblem with 
limited information communication. The distributed method 
ADMM is very suitable for distributed convex optimization, 
and in particular to large-scale problems [19]. At present, 
many ADMM variations have been derived. Distributed 
computing of power system needs a kind of parallel 
algorithm which is suited to large power grid layered 
distribution control structure, quickly applied to the real-
time control, conform to the development direction of power 
market. The ADMM can meet this requirement. ADMM for 
formulating and solving a decentralized unit commitment 
problem is presented in [20] which provide a significant 
benefit for computational speed. In [21], an optimal power 
flow scheme based on ADMM is proposed, which proves 
the expansibility and convergence of the algorithm.  

Aiming at the characteristics of multi-zone autonomous 
decision-making in modern power system, based on the 
construction of decomposition and interaction mechanism, 
four kinds of distributed methods based on ADMM are 
employed to realize distributed cooperative ED of power 
system. These algorithms have the following three 
advantages: 1) Distributed ED methods have better 
confidentiality. 2) Distributed ED methods are more 
scalable and flexible. 3) Distributed ED methods are more 
robust than centralized ED when loss the certain local 
controllers. The major contributions are summarized as 
follows: 1) Four algorithms all decouple sub-problems 
for each unit. This means that the parameters of each unit 
can be kept in only one computing node. They are fully 
distributed to meet the needs of modern industrial privacy 
protection. 2) We use four fully distributed algorithms to 
solve ED problem. Among these methods, which are 
ADMM, E_ADMM, D_ADMM, and ADM_G, the first 
three methods can be implemented in master-slave 
distributed and parallel schema. And the master-node can 
be deployed in regional center; other computing nodes can 
be deployed (or installed) on each unit. Most computations 
for each unit can be done in each node in parallel. 3) The 
simulation results show that E_ADMM and D_ADMM can 
obtain high-quality solutions in reasonable times and 
D_ADMM algorithm has better parallel performance, 
ADMM has the best convergence for finding a normal 
quality solution, and this method is suited to solve large-
scale ED problems when real-time solutions are needed. 

 
 

2. Formulation for ED 
 
The objective of the ED problem is to minimize the total 

operation cost: 
 

 ( )2
, ,

1 1

N T

i i t i i t i
i t

min F  = a P b P c
= =

+ +åå  (1) 

 
where F is the total fuel cost of the units, N is the total 
number of units in the system, ,i tP  is the power output of 
unit i in period t , ia , ib ,and ic are the cost coefficients of 
unit i , respectively. 

The constraints of the ED model are: 
1) Power balance constraints: the sum of all units must 

be equal to the system requirements. 
 

  , ,
1

N

i t D t
i

P P
=

=å    (2) 

 
where ,D tP  is the system load demand in period t . 

2) Unit generation limits: the power output of each unit 
must be limited to one upper and lower. 

 
 ,

min max
i i t iP P P£ £  (3) 

 
where min

iP , max
iP  are the maximum power output and 

minimum power output of unit i , respectively. 
3) Ramp rate limits: the power output of a unit can’t 

change by more than a certain value over a period of time. 
 
 , , 1i t i t iP P UR-- £  (4) 
 , 1 ,i t i t iP P DR- - £  (5) 

 
where ,i tP  and , 1i tP -  are the power output of unit i in 
period t and 1t - . iUR , iDR  are the ramp up and down 
limits of unit i, respectively. 

Then, the ED problem model is: 
 

  (6) 

 
 

3. Theoretical Basis of ADMM 
 
ADMM can be traced back to the 1950s, and it was 

developed rapidly in the 1970s [19], which was first 
proposed by Gabay and Mercier. In recent years, due to 
fast processing performance and good convergence 
performance, the algorithm has attracted much attention 
in the field of large-scale data analysis and processing, 
such as statistical learning, speech recognition, image 
processing, etc. 

ADMM is an important method to solve the convex 
optimization problem with separable structure. It is 
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generally used to solve the convex optimization problem 
with equality constraints as follows: 

 
 ( ) ( )min f x g z+  
 . .s t   Ax Bz c+ =  (7) 

 
Where nx RÎ , mz RÎ  are variables, p nA R ´Î , 

p mB R ´Î , 1
1 1:k kP P+ = % . The ( )f g and ( )g g  are convex 

functions. 
To solve the problem (7) by ADMM, we form the 

augmented Lagrangian 
 

 
( ) ( ) ( ) ( )

( ) 2

, ,

/ 2

T
ρL x z y f x g z y Ax Bz c

ρ Ax Bz c

= + + + -

+ + -
 (8) 

 
where y  is the Lagrange multiplier, 0ρ >  is called the 
penalty parameter, “ g ” denotes “ 2g ”. 

Then the unscaled form ADMM consists of the iterations 
as follows:  

 

 ( )1 : , ,k k k
ρ

x
x argmin L x z y+ =      (9) 

 ( )1 1: , ,k k k
ρ

z
z argmin L x z y+ +=    (10) 

 ( )1 1 1:k k k ky y ρ Ax Bz c+ + += + + -  (11) 

 
Let ( )1/u ρ y=  which called as the scaled dual 

variable, then (9)-(11) can be equivalently expressed as a 
scaled form: 

 

( ) ( )
21 : / 2k k k

x
x argmin f x ρ Ax Bz c u+ æ ö= + + - +ç ÷

è ø
  (12) 

( ) ( )
21 1: / 2k k k

z
z argmin g z ρ Ax Bz c u+ +æ ö= + + - +ç ÷

è ø
 (13) 

1 1 1:k k k ku u Ax Bz c+ + += + + -      (14) 
 
Under two assumptions, ( )0 , ,ρL x z y=  has a saddle 

point, and ( )f g  and ( )g g  are closed, proper, and convex, 
the objective function of the iterates approaches the 
optimal value, i.e., ( ) ( )k kf x g z+ ® p*, where p* is the 
optimal value of (7). 

 
 
4. Methodology for 4 Distributed ED Methods 

based on ADMM 
 
For the sake of convenience, throughout the paper the 

following notations are used for the ED problem descripted 
in Section 2. ,1 ,2 ,; ; ;i i i i TP P P Pé ù= ë ûL , 1 2[ ; ; ; ]NP P P P= L , 

( )f P = ( )
1

N
i ii

f P
=å , ADMMe , ,1 ,2 ,, , ,D D D D TP P P Pé ù= ë ûL . 

The constraints (3)(4)(5) can be fully decoupled according 
to the unit, and then define the set 3ρ , 1, ,i N= ¼ ; 

1 { | (3)(4)(5)}χ P= ; Constraint (2) can be fully decoupled 
according to the time period, then define the set 

2 { | (2)}Pχ = .  
We note that, with the above notations, all private 

parameters of each unit i  are included in ( )i if P  and 
1,iχ . In order to solve the ED problem in distributed 

manner, our paper aims to decouple the ED to be each sub-
problem corresponding to each unit i , and each sub-
problem i  only needs the data of ( )i if P  and 1,iχ , i.e., 
each unit can keeping its information secret. 

 
4.1 ADMM for fully distributed ED  

 
To use the classic ADMM, we introduce the auxiliary 

variable z  and the indicator function of set χ , defined 
as,  

 

 ( )   
  

0
χ

if x χI x
χ

 
if x 

Îì= í+¥ Ïî
     (15) 

 
Then, the objective function can be decomposed into 

two blocks with no overlapping variables by introducing 
indicator function, i.e., the model (6) can be rewritten in 
ADMM form as 

 
 ( ) ( ) ( )

1 2
min χ χf P I P I z+ +  

  z 0s   . Pt. - =       (16) 
 
The iterations of the scaled form of ADMM for model 

(16) are the following: 
 

( )
1

21
1: ( ) ( ) / 2k k k

χ
P

P argmin f P I P ρ P z u+ æ ö= + + - +ç ÷
è ø

 (17) 

( ) ( )
2

21 1
1: / 2k k k

χ
z

z argmin I z ρ P z u+ +æ ö= + - +ç ÷
è ø

 (18) 

( )1 1 1:k k k ku u P z+ + += + -   (19) 
 
P-update (17) can be completely decoupled according 

to each unit i , which is equivalent to solving the following 
sub-problems: 

 

 ( ) ( )
2

1min / 2 k k
i i i i if P ρ P z u+ - +  

 1,i i Ps . χ.t Î  (20) 
 
It can be seen that the sub-problems (20) can be 

performed in parallel. Each sub-problem only requires the 
relevant parameters of the unit  i . Each sub-problem is 
small in size and contains only T variables, i.e., iP .  

The z-update step (18) is equivalent to solving the 
following simple quadratic programming problem: 
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211min

2
k kρ z P u+- -  

 2s.t.z χÎ  (21) 
 
We are now in a position to give the classical ADMM 

for solving the problem of ED in full details. 
 

Algorithm 1 ADMM for Distributed ED 
Initialization: 0 0z = , 0 0u = , 0M > , 1 0r > , 

pri
1 0e > , dual

1 0e > . 
for 0, ,k M= ¼  

P-update:  
for each unit 1, ,i N= ¼ : (in parallel) 

get 1k
iP +  by solving problem (20). 

end 
z -update: get 1kz +  by solving (21). 
u -update: (19) 

1
k k kr P z= - , 

( )1
1 1
k k ks z zr += - , 

if pri
1 1
kr e£  and dual

1 1
ks e£  break. 

end  
return ( )f P  and P . 
 

4.2 ADMM solve the ED dual problem 
 
The constraint (2) in model (6) can be fully decoupled 

according to the time period. But in order to implement 
totally distributed ED solving, we must decoupled all 
constraints to be subproblems according to each unit.  

We rewrite the model (6) as  
 

 ( )
1

min
N

i i
i

f P
=
å   

 1

1,

1( ) 0

1, ,

N

i D
i

i i

s.t.
             

P P
N

P χ i N  
=

- =

Î =

ì
ï
í
ï
î

å
L， ，

  (22) 

 
For solving the above separable convex programming 

problem (22), we use a decomposition algorithm presented 
in [22]. Here, we note that, according to the practical 
significance of problem (22), Slater condition holds for the 
problem (22). So, strong duality holds for (22).  

Let ( ) ( ){ }1,
1inf ,

i ii P χ i i i DNh y f P y P PÎ= + - , where y  

is Lagrangian multiplier vector associated with equality 
constraints, “ ,g g  ” denotes the inner product. Then the 
Lagrangian dual function of (22) is 

 

 ( ) ( )
1

N

i
i

h y h y
=

=å  (23) 

Then, we obtain the dual problem of (22) as 
 

 max ( )h y  (24) 
 
This problem can be rewritten to be a minimization 

problem with local variables iz  and a common global 
variable y : 

 

 ( )
1

N

i i
i

min h z
=

ì üï ï-í ý
ï ïî þ
å      

 0iys. . zt - =  ,  1, ,i N= L .  (25) 
 
Partitioning the multiplier vector ( )1, , Np p p= L  and 

giving 2 0ρ > , we may write the ADMM for (25) as 
follows: 

 

( )
21

2
1 1

: , / 2
N N

k k k
i i

y i i

y argmin p y ρ y z+

= =

ì üï ï= < > + -í ý
ï ïî þ
å å   (26) 

( ) ( ){ }21 1
2: , / 2

i

k k k
i i i i i i

z
z argmin h z p z ρ y z+ += - - + -  (27) 

( )1 1 1
2:k k k k

i i ip p ρ y z+ + += + -      (28) 

 
The y-update problem (26) is minimizing a convex 

quadratic function of y, we can get the minimize y from the 
optimality condition, i.e., 

 

 1

21 1

1 1N N
k k k

i i
i i

y z p
N Nρ

+

= =

= -å å     (29) 

 
By substituting the expression for ( )i ih z  into iz -

update problem (27), we obtain that  
 

( )
1,

{ , 1i f infn
i i

i i i iz i DP χ
f P z P P

NÎ
-

ì ü
+ - -í ý

î þ
 

( )
21

2 / 2, }k k
i i ip z ρ y z++ -        

( )
1,

sup 1in ,f
i i

i i i i i D
P χ

z f P z P P
NÎ

ì ü
- - - -í ý

î þ
 

 ( )
21

2 / 2, }k k
i i ip z ρ y z++ -   

( )
1,

1sup inf{ ,
i i

i

k
P χ i i i i i Dz

f P z p P P
NÎ - - + - +  

( )
21

2 / 2 }k
iρ y z+ -   (30) 

 
For any fixed iP , the minimum on the right-hand side of 

(30) is uniquely attained by 
 

 1

2

1 1k k
i i i Dz y p P P

ρ N
+ æ ö= + + -ç ÷

è ø
 (31) 
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We may thus substitute (31) into the function on the 
right-hand side of (30) to eliminate the variables iz . As a 
result, we obtain  

 

( )
1,

* 1

2

1 1: arg max { ,
i i

k k
i P χ i i i i DP f P y p P P

ρ N
+

Î
æ ö= - - < + + -ç ÷
è ø

1k
i i Dp P P

N
+ - > + ( )

2

2
2

1 1/ 2 }k
i i Dρ p P P

ρ N
æ ö+ -ç ÷
è ø

 

( )
1,

2
12

2

1 1
2i i

k k
P χ i i i i D

ρargmin f P y p P P
ρ N

+
Î

ì üæ öï ïæ ö= + + + -í ýç ÷ç ÷
è øè øï ïî þ

 

  (32) 
 
Therefore, if a solution *

iP  of problem (32) is found, 
we can determine iz  by (31). 

Note that, by the separability of problem (25), the 
updates (27) and (28) of variables ( )1, , Nz z z= L  and 

( )1, , Np p p= L  can be performed in parallel for  
1, ,i N= L . 

 

Algorithm 2 D_ADMM for Distributed ED 

Initialization: 0 0iz = , 0 0ip = , 0M > , 2 0r > , 
feasible
2 0.e >  

for  0, ,k M= ¼  
(29) 
for each unit 1, ,i N= ¼ :(in parallel) 

(32) 
1 1 *

2

1 1k k k
i i i Dz y p P P

Nr
+ + æ ö= + + -ç ÷

è ø
  

1 1 1
2: ( )k k k k

i i ip p y zr+ + += + - , 
end 

1k ky ye +

¥
= -    

if feasible
2 e e<  break. 

end  
return ( )f P  and P . 

 
4.3 Alternating direction method with gaussian back 

substitution 
 
It can be seen that the model (6) is the linearly 

constrained separable convex minimization problem. And 
the objective function is decomposed into N blocks, then, 
the model (6) can be rewritten as: 

 

 ( )
1

min i i
N

i
f P

=å   

 
,

1

1

. .
1

  

, ,
i D

i i

N

is t
,      

P P
P χ    i N

=
ìï
í

=ï

=

Îî

å
K

 (33) 

Inspired by the efficiency of ADMM, a natural idea for 
solving (33) is to directly extend the two blocks ADMM 
scheme descripted in section 3 for (33) with N  blocks: 

 

( ) 3 11
1

: arg min { || (
2i

iρk k
i p i i j ij

P f P P P
-+
=

= + + +å  

 2
1,1

3
1, ,1) || },

N k k
j D i ij i

iλ NP P P χ
ρ= +

Î =- -å L   (34) 

 ( )1
3 1

 
Nk k k

j Dj
λ λ ρ P P+

=
-= -å    (35) 

 
However, [23] points out that the scheme (34)-(35) is 

not necessarily convergent if no further conditions are 
posed on the model (33),  even though its efficiency has 
been verified empirically by some recent applications (see 
[24, 25]). Here, we introduce the Gaussian back 
substitution proposed in [26] to guarantee the convergence 
of ADMM with N blocks. 

After each round of ADMM iteration, i.e. (34)-(35), let 
 

 ( ) ( )1 1 1 1
2 2: ; ; ; ;; ; :k k k k k k k k

N Nw P P λ P P λ w+ + + += ¼ = ¼ =%% %% , (36) 

 
then the Gaussian back substitution step obtains new and 
corrected 1kw +  by solving following equation, 
 

 ( ) ( )1 1T k k k kH M w w σ w w- + - = -% ,  (37) 

 
where ( )0,1σ Î , and [26] recommend ( )0.5,1σ Î  (or 
even more aggressively, σ =1);  

3 2 2

3 2 3

3

0 0

0
10 0

T

T T
N N N

λ

ρ D D

M ρ D D ρ D D

E
ρ

é ù¼
ê ú
ê ú

= ê ú¼
ê ú
ê ú¼
ê úë û

M O M M
,  

λE  is identify matrix with dimension matching vector λ .  

3 2 2 3
3

1, , ,T T λ
N NH diag ρ D D ρ D D E

ρ
æ ö

= ¼ç ÷
è ø

,  

iD  is the coefficient matrix of iP  in constraint (2), for 
our ED problem, iD  actually is an identity matrix, and 

then it is easy to verify that 1

0

0 0
0 0

T

λ

E E

H M E
E

-

¼é ù
ê ú
ê ú= ¼ê ú
ê ú¼ë û

M O M M
 

which is nearly a upper triangle block matrix. So the 
Gaussian back substitution step (37) can be solved by 
using back-substitution algorithm [27] just as shown in the 
following Algorithm 3. 

Now, we have our ADM with Gaussian back substitution 
(ADM-G) for solving ED distributed. But, a disadvantage 
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of ADM_G is that the blocks are updated one after another, 
which is not amenable for parallelization. 

 
Algorithm 3 ADM_G for Distributed ED 

Initialization: 0 0:iP = , 0 0l = , 0M > , 3 0r > , 

( ) : 0f P = , ( )0,1s Î , feasible
1 0.e >  

for  0, ,k M= ¼  
ADMM step (prediction step):  

for 1, ,i N= ¼ : 

obtain °
k

iP  by solving (34) 
end 
obtain kl%  by using (35) 

Gaussian back substitution step (correction step ): 

( )1 :k k k kl l s l l+ + -= %   

( ):k k k k
N N NP P Pl s -= + %   

for i  = 1N - , 2N - , …, 2 

( ) ( ){ }1
1 1:k k k k k k

i i i i i iP P P P P Ps+
+ ++ - -= -% %   

end 
1

1 1:k kP P+ = %   

{ }1 1
1 1

1 0 1 0
1 1

max
max ,

k k k k
i i i

i i

P P

P P

l l
e

l l

+ +ì ü- -ï ï= í ý
- -ï ï

î þ

, 

if feasible
1e e£  break. 

end  
return ( )f P nd P . 

 
4.4 Exchange ADMM algorithm 

 
The sequential nature of ADM_G motivates us to 

consider using a scheme that updates all the N  blocks 

in parallel. By substituting 
1

i i Dx P P
N

= -  into problem 

(33), the constraints (3)(4)(5) become as follows: 
 

 , , ,
1 1min max

i D t i t i D tP P x P P
N N

- £ £ - ,  (38) 

 , , 1i t i t ix x UR-- £ ,  (39) 

 , 1 ,i t i t ix x DR- - £ , (40) 
 
Similar to 1χ  and 1,iχ , we define the set 

3, { | (38)(39)(40)}iiχ x= , 1, ,i N= ¼  and 
13 { : ( ,..., ) | (38)(39)(40)}Nχ x x x= = . 

Then we have the follow exchange problem: 
 

 ( )
3,

1
i i

N
i
x χ i

i

min g xÎ
=
å   

 0, 1, ,
N

i
i

s.t. x i N= =å K   (41) 

 
where  

( )
2

2 1 1 1( 2 )i
i i i i i D i i D i D ig x a x b a P x a P b P c

N N N
æ ö= + + + + +ç ÷
è ø

. 

The exchange problem can be solved via ADMM, the 
iterations of the scaled form of ADMM [19]: 

 

 ( ) 41 : arg min { ||
2i

kρk i k
i x i i ix g x x x x+ = + - + +  

 2
3,|| ,} 1,k

i iu i Nx χ =Î L  (42) 

 1 1:k k ku u x+ += + , (43) 
 

where 
1

1  
N

i
i

x x
N

=

= å  is the average of 1, , Nx xL . 

Here the x -update (42) can be carried out in parallel, 
with the subvectors ix  updated by N  separate 
minimizations. The u -update gathers all the 1k

ix + , and 
broadcasts 1ku +  back to the processors handing the ix  
updates. 

 
Algorithm 4 E_ADMM for Distributed ED 

Initialization: 0 0:ix = , 0 0u = , 0M > , 4 0r > , 
pri 0e > , dual 0e > . 

for  0, ,k M= ¼  
for each unit 1, ,i N= ¼ :(parallel) 

(42) 
end 
(43) 

( )1 1 1 1 1
2 1 , ,k k k k k

Nr x x x x+ + + + += - -L , 

( )1 1
2 4 , ,k k k k ks x x x xr - -= - - -L . , 

if pri
2 2
kr e£  and dual

2 2
ks e£  break. 

end 
1 1

D
1k kP x P
N

+ += + , 

return f (P) and P. 
 
We note that, except ADM_G, the other three ADMMs 

can be extended and applied to the case that DC power 
flow network constraints being considered.  

 
 

5. Numerical Results and Analysis 
 
In order to facilitate the comparison of four kinds of 

fully distributed algorithms for solving the ED problem, in 
this section, we use eight kinds of unit characteristic data 
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as the basic unit data, and the combination is 15 cases. The 
data of eight units and load demands can be found in [28] 
and [29].The specific combination is shown in Table 1, 
and the total number of time periods are 24T = . All the 
algorithms in this paper run the software environment are 
MATLAB  R2014a, the computer processor for the Intel 
(R) Core (TM) i7-4790 CPU 3.60GHz, memory is 8.0GB. 
The quadratic programming problem (QP problem) is 
calculated using CPLEX12.6.2. Unless otherwise specified,  
we used the parameter values 310M = , 0.5σ = . 

1 0.001feasibleε = , 2 0.01feasibleε = , 3
1 10absε -= , 2

1 10relε -= , 

( ){ }1 1 1
1 1 11 max ; ; ,pri abs rel k k k

Nε NT ε ε P P z+ + += + ¼ - , 

( )1 1
1 1 1 1 1 1; ;dual abs rel k k

Nε NT ε ε ρ u ρ u+ += + ¼ , 4
2 10absε -= , 

5
2 10relε -= , ( ){ }1 1

2 2 12 max ; ;pri abs rel k k
Nε NT ε ε x x+ += + ¼ , 

1
2 2 2 4 2
dual abs rel kε NT ε ε ρ u += + . 

 
5.1 Convergence analysis 

 
The convergence of the ADM-G for solving multi-block 

problem is proved in [26]. The convergences of the other 
three fully distributed ED methods can be obtained 
according to the convergence of the classical ADMM 
descripted in Section 3 of this paper. The primal residual 
and the dual residual, which are the features of ADMM 
convergence, also converge to 0 (can be seen in the 
following simulation results). And the convergence of the 
classical ADMM can be found in [19, 30]. Because that 

( )f P  is strongly convex and the constraints of problem 
(6) are linear, the convergences of these fully distributed 
ED methods can be theoretically guaranteed also.  

Now, we report some numerical results about convergence 
speed. In our simulations, these fully distributed algorithms 
have the best performances in convergence speed while 
solving our ED cases when 1 3 4, ,ρ ρ ρ  are 0.125 and 2ρ is 10.  

Fig. 1 shows the results of four algorithms for solving 
the Case 1 in Table 1 while iteration number is 80M = . 
The black line in this Figure 1 labeled “Cplex” represents 
the final optimal value which obtained by using CPLEX to 
directly solve model (6) with default setting. As can be 

Table 1. Number of units per problem case 

8 types of units No. 
1 2 3 4 5 6 7 8 

Total 
units 

1 12 11 0 0 1 4 0 0 28 
2 13 15 2 0 4 0 0 1 35 
3 15 13 2 6 3 1 1 3 44 
4 15 11 0 1 4 5 6 3 45 
5 15 13 3 7 5 3 2 1 49 
6 10 10 2 5 7 5 6 5 50 
7 17 16 1 3 1 7 2 4 51 
8 17 10 6 5 2 1 3 7 51 
9 12 17 4 7 5 2 0 5 52 

10 13 12 5 7 2 5 4 6 54 
11 46 45 8 0 5 0 12 16 132 
12 40 54 14 8 3  9 13 156 
13 50 41 19 11 4 4 12 15 156 
14 51 58 17 19 16 1 2 1 165 
15 43 46 17 15 13 15 6 12 167 
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Fig. 1. Comparison of convergence speed for four methods 

Fig. 2. ADMM primal residual values 

Fig. 3. ADMM dual residual values 
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seen in this figure, after about 40 iterations, four methods 
obtain nearly equal optimal values. All these values are 
very close to the optimal values reported by CPLEX. And 
all these methods obtain nearly same solutions. However, 
their performances in convergence speed are different. The 
ADMM, E_ADMM, and D_ADMM have the similar 
performances and can reach the real optimal value after 
about 10 iterations. ADM_G is the slowest one, which need 
about 40 iterations.  

Fig. 2 and Fig. 3 respectively report the primal residual 
1
k k kr P z= -  and dual residual 1

ks = 1
1( )k kρ z z +-  of the 

classic ADMM in the algorithm 1 while solving Case 1. It 
can be seen that these two values converge to 0 as the 
number of iterations increases. Fig. 1, 2, and 3 illustrate the 
convergence procedure of classical ADMM for solving 
Case 1.  

 
5.2 Stability analysis 

 
The stabilities of four fully distributed algorithms, which 

are based on ADMM, are influenced, more or less, by the 
setting of penalty parameter. In order to facilitate the 
comparison of the influence of penalty parameter variation 
on the stability of the algorithms, we solve the same test 
case with different methods by setting different penalty 
parameters. 

Fig. 4 gives the comparison of different penalty 
parameters 1ρ  for algorithm 1 (ADMM) while solving 
Case 1. In this figure, the line labeled “Cplex” represents 
the optimal value obtained by CPLEX, which can be 
denoted as ( )Cplexf P .  Furthermore, we denote the final  
objective value obtained by Algorithm 1 as ( )ADMMf P . Then 

we can denote 
( ) ( )

( )
ADMM Cplex

Cplex

f P f P
ADMM f Pe

-
=  which represents 

the relative error of obtained final objective value for 
ADMM. Fig. 5 gives the comparison of different penalty 
parameters 1ρ  for algorithm 1 in the final objective values. 

As can be seen in Fig. 4, ADMM can converge with the 
same preset tolerances for all different parameters in our 
simulations, but the algorithm stability is different. See 
Fig. 4 and Fig. 5 simultaneously. Fig. 5 shows that when 

1 0.01ρ = , ADMM obtains the best final objective value 
which is the nearest to ( )Cplexf P , however, Fig. 4 shows 
that ADMM convergence very slowly for this 1 0.01ρ = . 
When the penalty parameter is 0.125, the convergence 
rate is fastest and the percentage difference between the 
calculated value and the CPLEX calculation is about 
0.02% which is a little more than the ADMMe  for 1ρ =  
0.01  but is significantly less than the ADMMe  for 1 1ρ > . 
At the same time, we know the sooner the constraint is 
satisfied as the penalty parameter increases. On the contrary, 
the more easily meet the objective function requirements. 
In addition, we do not give the detailed results for the other 
two methods, D_ADMM and E_ADMM because that, in 
our simulations, they have almost the similar numerical 
performances while setting different penalty parameters.  

Fig. 5. Comparison of for ADMM with different 1ρ  
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Fig. 6. Convergence comparison of ADM_G with different 
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Fig. 6 gives the comparison of different 3ρ  for 
algorithm 3 (ADM_G) while solving Case 1. Fig. 7 gives 
the comparison of different penalty parameters 3ρ  for 
ADM_G in _ADM Ge , which can similarly defined as 

ADMMe . It can be seen in Fig. 6, ADM_G can converge 
with the same preset tolerances for all different penalty 
parameters. But, different to ADMM, the objective value 
convergence procedures of ADM_G for different penalty 
parameters are very similar, and the convergence speed is a 
little slow for the smaller penalty parameters. Now, let’s 
look at Fig. 7. It can be seen that ADM_G obtain the best 
objective value with smallest _ADM Ge  when the penalty 
parameter is 0.125. When the penalty parameter is 0.01 or 
0.001, the simulation shows that _ 0ADM Ge < , then we 
have ( ) ( )_ADM G Cplexf P f P< . Actually, AMD_G can 
push _ADM Ge  to close to 0 by improving the tolerance 

1
feasibleε .  
 

5.3 Calculation speed comparison 
 
We use four fully distributed algorithms and the solver 

of CPLEX to solve the 15 cases of Table 1. The simulation 
results are shown in Table 2. In this table, column “time” 
represents the execution time; “ 0Xe < ” represents relative 
error of objective value for method “ X ”; “ K ” reports the 
number of iterations. 

As can be seen in Table 2, among four distributed 
methods, D_ADMM has the best performance in our 
simulations. D_ADMM consumes the second less average 
CPU times and achieves the best objective values (there are 
only 3 cases’ “ _D ADMMe ” that are 0.01%). E_ADMM 
consumes the third less average CPU times and achieves 
the second better objective values (there are 4 cases’ 
“ _E ADMMe ” that are 0.01%). ADMM consumes the least 
average times but achieves the significant worse objective 
values. As for ADM-G, this method uses the most times, 
but achieves the worst objective values. In Algorithm 3, we 
see that the algorithm have a correction step at each 
iteration. Through the correction, we ensure that the value 
of the variables change within a certain range after each 
iteration, so we can see that the objective function value of 
the ADM_G changes as shown in Fig. 1 and Fig. 6. These 
cause the convergence of the algorithm to slow down. In 
addition, we note that there is a higher _E ADMMe  for Case 
6 using the ADMM algorithm, which indicates that the 
relative error between the result of the ADMM algorithm 
and the solver of Cplex is larger. The main reason for this 
case is that, the changed trends of the total cost ( )f x  are 
similar for the 6th test case and the other test cases, but 
ADMM meets the requirement of accuracy with notable 
fewer iterations while solving the 6th test case. 

 
5.4 Parallel performance comparison 

 
As we discussed in Section 4 when we describing these 

distributed algorithms, ADMM, D_ADMM, and E_ADMM 
can be carried out in parallel. And all those steps which can 
be executed parallel have been marked in the descriptions 
of these algorithms.  

 

 
Fig. 7. The comparison of _ADM Ge  for ADM_G with 

different 3ρ  

Table 2. Comparison of four fully distributed methods in performances 

Cplex  ADMM  D_ADMM ADM_G  E_ADMM No. 
f(P)($)  f(P)($) time(s) eADMM

 
K  f(P)($) time(s) eD_ADMM

 
K  f(P)($) time(s) eADM_G

 
K  f(P)($) time(s) eE_ADMM

 
K 

1 3918748   3919626 2.78 0.02% 38  3918749 3.34 0.00% 49  3920229 4.52 0.04% 64  3918742 3.95 0.00% 58 
2 4930182   4932364 3.74 0.04% 40  4930257 4.10 0.00% 48  4934050 6.79 0.08% 75  4930238 5.24 0.00% 59 
3 5333629   5336358 3.95 0.05% 35  5334089 4.82 0.01% 46  5344252 9.52 0.20% 86  5333887 6.45 0.00% 60 
4 5043949   5042868 3.59 -0.02% 34  5044086 5.25 0.00% 52  5046557 9.42 0.05% 81  5043929 6.58 0.00% 64 
5 5618227   5621163 4.14 0.05% 34  5618476 6.06 0.00% 51  5630697 10.76 0.22% 87  5618520 7.32 0.01% 62 
6 4692242   4706561 1.89 0.31% 16  4692315 8.99 0.00% 81  4700552 11.06 0.18% 92  4692160 9.57 0.00% 83 
7 6094415   6096244 4.47 0.03% 36  6094509 5.88 0.00% 49  6101022 11.55 0.11% 88  6094494 7.43 0.00% 62 
8 5487161   5488912 3.85 0.03% 31  5487336 7.60 0.00% 63  5498977 11.81 0.22% 94  5487368 9.13 0.00% 76 
9 5882288   5884095 3.90 0.03% 30  5882110 7.09 0.00% 58  5899410 11.64 0.29% 89  5882243 7.85 0.00% 63 

10 5398276   5399975 4.10 0.03% 32  5398578 6.77 0.01% 55  5413215 12.94 0.28% 98  5398535 8.41 0.00% 67 
11 16550901   16558734 12.36 0.05% 37  16551041 15.54 0.00% 50  16564824 67.05 0.08% 199  16551194 21.38 0.00% 55 
12 18062626   18068295 12.79 0.03% 33  18063188 18.09 0.00% 50  18098600 92.92 0.20% 232  18065206 20.12 0.01% 40 
13 17792083   17799154 13.34 0.04% 34  17792777 20.78 0.00% 57  17828363 93.06 0.20% 232  17793204 29.74 0.01% 63 
14 20809395   20820371 15.61 0.05% 36  20810941 18.59 0.01% 46  20860861 105.66 0.25% 237  20810925 29.26 0.01% 55 
15 18225919   18231444 13.16 0.03% 32  18226198 25.97 0.00% 67  18269991 102.38 0.24% 234  18225882 36.10 0.00% 73 
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Table 3. Results of parallel ADMM in a local computer 

1 worker  2 workers  4 workers No. 
time(s)  time(s) pspu  time(s) pspu 

1 2.78  2.29 1.21  1.99 1.4 
2 3.74  2.76 1.36  2.4 1.56 
3 3.95  2.83 1.4  2.48 1.59 
4 3.59  2.69 1.33  2.3 1.56 
5 4.14  2.87 1.44  2.46 1.68 
6 1.89  1.35 1.4  1.15 1.64 
7 4.47  3.11 1.44  2.56 1.75 
8 3.85  2.69 1.43  2.24 1.72 
9 3.9  2.7 1.44  2.23 1.75 

10 4.1  2.95 1.39  2.42 1.69 
11 12.36  8.3 1.49  6.09 2.03 
12 12.79  8.52 1.5  6.52 1.96 
13 13.34  8.81 1.51  6.53 2.04 
14 15.61  10.24 1.52  7.52 2.08 
15 13.16  8.8 1.5  6.51 2.02 

 
Table 4. Results of parallel D_ADMM in a local computer 

1works  2works  4works No. 
time(s)  time(s) pspu   time(s) pspu  

1 3.34  2.79 1.2  2.39 1.4 
2 4.1  3.06 1.34  2.6 1.58 
3 4.82  3.47 1.39  2.81 1.72 
4 5.25  3.96 1.33  3.21 1.64 
5 6.06  4.19 1.45  3.31 1.83 
6 8.99  6.46 1.39  5.24 1.72 
7 5.88  4.01 1.47  3.19 1.84 
8 7.6  5.09 1.49  4.17 1.82 
9 7.09  4.8 1.48  3.88 1.83 

10 6.77  4.57 1.48  3.76 1.8 
11 15.54  8.96 1.73  6.73 2.31 
12 18.09  10.05 1.8  7.7 2.35 
13 20.78  11.49 1.81  8.71 2.39 
14 18.59  10.26 1.81  7.76 2.4 
15 25.97  14.66 1.77  10.83 2.4 

 
Table 5. Results of parallel E_ADMM in a local computer 

1works  2works  4works No. 
time(s)  time(s) pspu   time(s) pspu  

1 3.95  3.18 1.24  2.95 1.34 
2 5.24  3.77 1.39  3.5 1.5 
3 6.45  4.45 1.45  3.99 1.62 
4 6.58  4.7 1.4  4.16 1.58 
5 7.32  5.17 1.42  4.45 1.64 
6 9.57  6.87 1.39  5.7 1.68 
7 7.43  5.17 1.44  4.61 1.61 
8 9.13  6.36 1.44  5.48 1.67 
9 7.85  5.31 1.48  4.56 1.72 

10 8.41  5.89 1.43  5.06 1.66 
11 21.38  15.25 1.4  11.98 1.78 
12 20.12  14.76 1.36  12.28 1.64 
13 29.74  20.72 1.44  16.35 1.82 
14 29.26  21.24 1.38  16.75 1.75 
15 36.10  26.88 1.34  20.31 1.78 

 
First, we implement the parallel versions for these three 

algorithms in Matlab with Parallel Computing Toolbox 
(PCT), and test ADMM, D_ADMM, and E_ADMM with 1 
worker, 2 workers, and 4 workers in a local computer, 

Table 6. Results of parallel ADMM in distributed computers 

 2 workers  4 workers No. 
 time(s) pspu   time(s) pspu  

1  5.11 0.57  3.07 0.94 
2  6.2 0.61  3.79 1 
3  6.52 0.63  5.2 0.78 
4  6.69 0.57  4.82 0.79 
5  6.62 0.64  4.94 0.86 
6  3.25 0.6  2.31 0.85 
7  7.34 0.66  5.94 0.82 
8  6.03 0.64  5.22 0.74 
9  6.36 0.64  5.01 0.81 

10  6.42 0.66  5.36 0.79 
11  13.3 0.93  10.2 1.21 
12  13.6 0.94  10.5 1.22 
13  14.2 0.94  10.9 1.23 
14  15.8 0.99  11.4 1.37 
15  14 0.94  10.3 1.28 
 

Table 7. Results of parallel D_ADMM in distributed 
computers 

 2 workers  4 workers No. 
 time(s) pspu   time(s) pspu  

1  4.92 0.68  3.46 0.97 
2  5.53 0.84  3.78 1.23 
3  6.59 0.77  4.21 1.2 
4  7.69 0.74  5.45 1.04 
5  7.91 0.78  5.85 1.06 
6  12.8 0.74  9.01 1.05 
7  7.74 0.78  5.7 1.06 
8  10.2 0.77  7.34 1.07 
9  9.59 0.83  7.12 1.12 

10  9.1 0.77  6.79 1.04 
11  15.9 1.02  11.4 1.43 
12  18.4 1.08  13.5 1.47 
13  21.1 1.03  15.5 1.41 
14  18 1.08  12.9 1.5 
15  26.1 1.05  18.9 1.45 
 

Table 8. Results of parallel E_ADMM in distributed 
computers 

 2 workers  4 workers No. 
 time(s) pspu   time(s) pspu  

1  5.05 0.79  6.67 0.6 
2  10.41 0.55  8.12 0.71 
3  12.42 0.52  10.4 0.62 
4  13.44 0.5  11.2 0.6 
5  14.18 0.53  11.4 0.66 
6  18.77 0.52  15.3 0.64 
7  14.36 0.54  11.6 0.67 
8  17.73 0.53  14.1 0.67 
9  14.96 0.54  11.8 0.69 

10  16.16 0.54  13.1 0.66 
11  30.17 0.73  24.7 0.9 
12  27.28 0.81  23.1 0.96 
13  40.14 0.77  33.6 0.92 
14  38.05 0.81  31.8 0.97 
15  48.55 0.94  40.4 1.12 
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respectively. And the results are listed in Table 3, 4, and 5. 
In these tables, column “time” represents the execution 
time; column “ spup ” represents the parallel speedup. 

It can be seen that, with the increase of case scale, the 
speedups of all algorithms gradually increase, and the 
speedups with 4 workers are greater than the ones with 2 
workers. At the same time, we can see that the D_ADMM 
has better parallel performance than the other two 
algorithms when 2 workers and 4 workers are used. 

Next, we use Matlab Distributed Computing Engine 
(MDCE) services to achieve distributed cluster computing 
functions. Here, we connect two computers with the same 
configuration, by turning on one worker and two workers 
on each computer, respectively, to achieve fully distributed 
parallel computing. The statistics of three algorithms are 
listed in Table 6, Table 7, and Table 8.  

By comparing with Tables 3, 4 and 5, it is found that 
using this distributed parallel configuration method will take 
more time, which is related to computer communication, 
network delay and so on, resulting in decreased 
performance. 

 
 

6. Conclusion 
 
In this paper, we solve the ED problem in four fully 

distributed manners based on ADMM. The separable 
objective function and physical constraints for each unit 
can be decoupled in four fully distributed methods. Except 
ADM_G, the other three fully distributed methods all can 
be carried out in master-slave distributed and parallel 
schema and can protect privacy for independent power 
producer. Simulation results show that the D_ADMM 
and the E_ADMM can obtain high-quality solutions in 
reasonable times, and the D_ADMM has the better parallel 
performance, the ADMM can meet the tolerance in the 
shortest possible times, which suit for solving large-scale 
ED problems.  
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