• Title/Summary/Keyword: Algorithm Element

검색결과 2,123건 처리시간 0.027초

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Analysis and Optimization of Permanent Magnet Dimensions in Electrodynamic Suspension Systems

  • Hasanzadeh, Saeed;Rezaei, Hossein;Qiyassi, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.307-314
    • /
    • 2018
  • In this paper, analytical modeling of lift and drag forces in permanent magnet electrodynamic suspension systems (PM EDSs) are presented. After studying the impacts of PM dimensions on the permanent magnetic field and developed lift force, it is indicated that there is an optimum PM length in a specified thickness for a maximum lift force. Therefore, the optimum PM length for achieving maximum lift force is obtained. Afterward, an objective design optimization is proposed to increase the lift force and to decrease the material cost of the system by using Genetic Algorithm. The results confirm that the required values of the lift force can be achieved; while, reducing the system material cost. Finite Element Analysis (FEA) and experimental tests are carried out to evaluate the effectiveness of the PM EDS system model and the proposed optimization method. Finally, a number of design guidelines are extracted.

A Shape Optimization of Universal Motor using FEM and Evolution Strategy

  • Shin, Pan-Seok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.156-161
    • /
    • 2002
  • This paper proposes an optimized universal motor for improving its performance using the finite element method (FEM) with the (1+1) Evolution Strategy (ES) algorithm. To do this, various design parameters are modified, such as air gap length, shape of motor slot, pole shoe, pole width, and rotor shaft diameter. Two parameters (arc length of stator pole and thickness of pole shoe) are chosen and optimized using the program, and the optimized model is built and tested with a performance measuring system. The measured values of the model are compared with those of the initial and the optimized model to prove the algorithm. As a result, the final model improves its performance compared with those of the initial model.

GENERAL ITERATIVE ALGORITHMS FOR MONOTONE INCLUSION, VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS

  • Jung, Jong Soo
    • Journal of the Korean Mathematical Society
    • /
    • 제58권3호
    • /
    • pp.525-552
    • /
    • 2021
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권4E호
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Hydrostatic Extrusion of Copper-Clad Aluminum Rod (구리 피복 알루미늄 봉의 정수압 압출에 의한 성형)

  • 박훈재;나경환;조남선;이용신
    • Transactions of Materials Processing
    • /
    • 제4권2호
    • /
    • pp.123-130
    • /
    • 1995
  • The present study is concerned with the hydrostatic extrusion process for the copper-clad aluminum rod through metallurgical joining. The rigid viscoplastic finite element analyses are performed for the steady state extrusion process of the bimetal rod. An algorithm for finding the interface profile of the bimetal rod by tracking a particle path in Eulerian domain is presented. The distributions of the effective strain rate, equivalent stress and hardness are examined for the several extrusion ratios. Experiments are also carried out for the copper-clad aluminum rod at room temperature. It is found out that the finite element predictions are generally in good agreement with the experimental observations. The detail comparisons of the extrusion loads predicted by the element method with those by experiments are given.

  • PDF

An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method (유선상류 유한요소법을 이용한 유동장의 해석)

  • 최형권;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권3호
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

A method for Simplified and Equivalent Finite Element Modeling Using Optimization Technique (최적화를 이용한 단순 유화 요소 모델링 기법 개발)

  • Lee, Gwang-Won;Seok, Il-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2001
  • As computer power is increased, refined finite element models are employed for structural analysis. However, it is difficult and expensive to use refined models in the design stage. The refined models especially cause problems in the preliminary design where the design is frequently changed. Therefore, simplified models are needed. The simplification process is regarded as an empirical technique. Simplified and equivalent finite element model of a structure has been studied and used in the preliminary design. A general approach to establish the simplified and equivalent model is presented. The generated simple model has satisfactory correlation with the corresponding refined finite element model. An optimization method, the Goal Programming algorithm is used to make the simple model. The simplified model is used for the design change and the changed design is recovered onto the original design. The presented method was verified with three examples.

Stress Analysis of Axisymmetric Cylindrical Shell (축대칭 원통형 셸의 응력해석)

  • Choi, M.S.;Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • 제16권6호
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the algorithm for the static analysis of an axisymmetric cylindrical shell by using the finite element-transfer stiffness coefficient method (FE-TSCM) is suggested. TE-TSCM combining both the modeling procedure of the finite element method (FEM) and the transfer procedure of the transfer stiffness coefficient method (TSCM) has the advantages of FEM and TSCM. After computational programs are made by both FE-TSCM and FEM for the stress analysis of the axisymmetric cylindrical shell, we compare the numerical results by FE-TSCM with those of FEM for two computational models in order to confirm the trust of FE-TSCM.